1,223 research outputs found

    The GALEX View of "Boyajian's Star" (KIC 8462852)

    Get PDF
    The enigmatic star KIC 8462852, informally known as "Boyajian's Star", has exhibited unexplained variability from both short timescale (days) dimming events, and years-long fading in the Kepler mission. No single physical mechanism has successfully explained these observations to date. Here we investigate the ultraviolet variability of KIC 8462852 on a range of timescales using data from the GALEX mission that occurred contemporaneously with the Kepler mission. The wide wavelength baseline between the Kepler and GALEX data provides a unique constraint on the nature of the variability. Using 1600 seconds of photon-counting data from four GALEX visits spread over 70 days in 2011, we find no coherent NUV variability in the system on 10-100 second or months timescales. Comparing the integrated flux from these 2011 visits to the 2012 NUV flux published in the GALEX-CAUSE Kepler survey, we find a 3% decrease in brightness for KIC 8462852. We find this level of variability is significant, but not necessarily unusual for stars of similar spectral type in the GALEX data. This decrease coincides with the secular optical fading reported by Montet & Simon (2016). We find the multi-wavelength variability is somewhat inconsistent with typical interstellar dust absorption, but instead favors a RV_V = 5.0 ±\pm 0.9 reddening law potentially from circumstellar dust.Comment: 8 pages, 4 figures, ApJ Accepte

    Investigating the efficacy of a proposed marine protected area for the Endangered humphead wrasse Cheilinus undulatus at a remote island group in Seychelles

    Get PDF
    The humphead wrasse Cheilinus undulatus is an iconic, ecologically important and Endangered fish species associated with coral reefs in the Indo-Pacific region. Due to its large size and complex life history characteristics, it is vulnerable to overfishing and has undergone substantial population declines in parts of its range. Knowledge of the species’ movement ecology is currently limited to only 2 previous studies, and very little is known about populations in the western Indian Ocean. The present study aimed to use passive acoustic telemetry to investigate the importance of a remote coral reef to a population of humphead wrasse in the Republic of Seychelles, and subsequently assess the efficacy of a proposed marine protected area at this location for protection of the species. Tagged fish (n = 20) exhibited persistent (\u3e500 d) site fidelity, with low dispersal distances (mean ± SD: 6.44 ± 4.0 km) and restricted core activity spaces (50% Brownian bridge kernel utilization density: 0.91 ± 0.61 km2). Additionally, the study site was home to a group of large (total length 97.9 ± 20.6 cm) and currently unexploited humphead wrasse that showed long-term predictable site fidelity and thus could be vulnerable to over-exploitation. The establishment of a proposed no-take marine protected area at the study site would encompass the core home range area of all tagged humphead wrasse and could effectively conserve this stronghold of Endangered fish to ensure the persistence of the species in Seychelles waters

    Thermal stability of dialkylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids: ex situ bulk heating to complement in situ mass spectrometry

    Get PDF
    Thermal decomposition (TD) products of the ionic liquids (ILs) [CnC1Im][BF4] and [CnC1Im][PF6] ([CnC1Im]+ = 1-alkyl-3-methylimidazolium, [BF4]- = tetrafluoroborate, and [PF6]- = hexafluorophosphate) were prepared, ex situ, by bulk heating experiments in a bespoke setup. The respective products, CnC1(C3N2H2)BF3 and CnC1(C3N2H2)PF5 (1-alkyl-3-methylimidazolium-2-trifluoroborate and 1-alkyl-3-methylimidazolium-2-pentafluorophosphate), were then vaporized and analyzed by direct insertion mass spectrometry (DIMS) in order to identify their characteristic MS signals. During IL DIMS experiments we were subsequently able, in situ, to identify and monitor signals due to both IL vaporization and IL thermal decomposition. These decomposition products have not been observed in situ during previous analytical vaporization studies of similar ILs. The ex situ preparation of TD products is therefore perfectly complimentary to in situ thermal stability measurements. Experimental parameters such as sample surface area to volume ratios and heating rates are consequently very important for ILs that show competitive vaporization and thermal decomposition. We have explained these experimental factors in terms of Langmuir evaporation and Knudsen effusion-like conditions, allowing us to draw together observations from previous studies to make sense of the literature on IL thermal stability. Hence, the design of experimental setups are crucial and previously overlooked experimental factors

    CHANGES IN BALANCE AND JOINT POSITION SENSE DURING A 12-DAY HIGH ALTITUDE TREK

    Get PDF
    The purpose of this study was to investigate changes in postural control and knee joint position sense (KJPS) during a trek to high altitude. Postural control during standing balance and KJPS were measured in 12 participants at sea-level, 3619m, 4600m and 5140m. Total (p = 0.003, d=1.9) and anterior-posterior sway velocity (p= 0.001, d=1.9) during standing balance with eyes open velocity was significantly greater at altitudes of 3619m and 5140m when compared with sea level. Despite a gradual ascent profile, exposure to 3619 m was associated with impairments in postural control. Importantly, these impairments did not worsen at higher altitudes. The present findings should be considered during future trekking expeditions when considering specific strategies to manage impairments in postural control that occur with increasing altitude

    Conservation of the structural and functional architecture of encapsulated ferritins in bacteria and archaea

    Get PDF
    Ferritins are a large family of intracellular proteins that protect the cell from oxidative stress by catalytically converting Fe(II) into less toxic Fe(III) and storing iron minerals within their core. Encapsulated ferritins (EncFtn) are a sub-family of ferritin-like proteins, which are widely distributed in all bacterial and archaeal phyla. The recently characterized Rhodospirillum rubrum EncFtn displays an unusual structure when compared with classical ferritins, with an open decameric structure that is enzymatically active, but unable to store iron. This EncFtn must be associated with an encapsulin nanocage in order to act as an iron store. Given the wide distribution of the EncFtn family in organisms with diverse environmental niches, a question arises as to whether this unusual structure is conserved across the family. Here, we characterize EncFtn proteins from the halophile Haliangium ochraceum and the thermophile Pyrococcus furiosus, which show the conserved annular pentamer of dimers topology. Key structural differences are apparent between the homologues, particularly in the centre of the ring and the secondary metal-binding site, which is not conserved across the homologues. Solution and native mass spectrometry analyses highlight that the stability of the protein quaternary structure differs between EncFtn proteins from different species. The ferroxidase activity of EncFtn proteins was confirmed, and we show that while the quaternary structure around the ferroxidase centre is distinct from classical ferritins, the ferroxidase activity is still inhibited by Zn(II). Our results highlight the common structural organization and activity of EncFtn proteins, despite diverse host environments and contexts within encapsulins

    The future of recreational fisheries: Advances in science, monitoring, management, and practice

    Get PDF
    Recreational fisheries (RF) are complex social-ecological systems that play an important role in aquatic environments while generating significant social and economic benefits around the world. The nature of RF is diverse and rapidly evolving, including the participants, their priorities and behaviors, and the related ecological impacts and social and economic benefits. RF can lead to negative ecological impacts, particularly through overexploitation of fish populations and spread of non-native species and genotypes through stocking. Hence, careful management and monitoring of RF is essential to sustain these ecologically and socioeconomically important resources. This special issue on recreational fisheries contains diverse research, syntheses, and perspectives that highlight the advances being made in RF research, monitoring, management, and practice, which we summarize here. Co-management actions are rising, often involving diverse interest groups including government and non-government organizations; applying collaborative management practices can help balance social and economic benefits with conservation targets. Technological and methodological advances are improving the ability to monitor biological, social, and economic dynamics of RF, which underpin the ability to maximize RF benefits through management actions. To ensure RF sustainability, much research focuses on the ecological aspects of RF, as well as the development of management and angling practices that reduce negative impacts on fish populations. For example, angler behavior can be influenced to conform to conservation-minded angling practices through regulations, but is often best accomplished through growing bottom-up social change movements. Anglers can also play an important role in fisheries monitoring and conservation, including providing data on fish abundance and assemblages (i.e., citizen science). The increasing impacts that growing human populations are having on the global environment are threatening many of the natural resources and ecosystem services they provide, including valuable RF. However, with careful development of research initiatives, monitoring and management, sustainable RF can generate positive outcomes for both society and natural ecosystems and help solve allocation conflicts with commercial fisheries and conservation

    The future of recreational fisheries: Advances in science, monitoring, management, and practice

    Get PDF
    Recreational fisheries (RF) are complex social-ecological systems that play an important role in aquatic environments while generating significant social and economic benefits around the world. The nature of RF is diverse and rapidly evolving, including the participants, their priorities and behaviors, and the related ecological impacts and social and economic benefits. RF can lead to negative ecological impacts, particularly through overexploitation of fish populations and spread of non-native species and genotypes through stocking. Hence, careful management and monitoring of RF is essential to sustain these ecologically and socioeconomically important resources. This special issue on recreational fisheries contains diverse research, syntheses, and perspectives that highlight the advances being made in RF research, monitoring, management, and practice, which we summarize here. Co-management actions are rising, often involving diverse interest groups including government and non-government organizations; applying collaborative management practices can help balance social and economic benefits with conservation targets. Technological and methodological advances are improving the ability to monitor biological, social, and economic dynamics of RF, which underpin the ability to maximize RF benefits through management actions. To ensure RF sustainability, much research focuses on the ecological aspects of RF, as well as the development of management and angling practices that reduce negative impacts on fish populations. For example, angler behavior can be influenced to conform to conservation-minded angling practices through regulations, but is often best accomplished through growing bottom-up social change movements. Anglers can also play an important role in fisheries monitoring and conservation, including providing data on fish abundance and assemblages (i.e., citizen science). The increasing impacts that growing human populations are having on the global environment are threatening many of the natural resources and ecosystem services they provide, including valuable RF. However, with careful development of research initiatives, monitoring and management, sustainable RF can generate positive outcomes for both society and natural ecosystems and help solve allocation conflicts with commercial fisheries and conservation

    Systematic study of a corrugated waveguide as a microwave undulator

    Get PDF
    Microwave undulators have great potential to be used in short-wavelength free-electron lasers. In this paper, the properties of a corrugated waveguide and its performance as an undulator cavity for a UK X-ray free-electron laser were systematically studied. The equations presented in this paper allow a fast estimation of the dimensions of the corrugated waveguide. An undulator cavity operating at 36 GHz designed for the HE 11 and HE 12 modes was investigated and the performance of both modes compared
    • …
    corecore