64 research outputs found
Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease
We integrated lipidomics and genomics to unravel the genetic architecture of lipid metabolism and identify genetic variants associated with lipid species putatively in the mechanistic pathway for coronary artery disease (CAD). We quantified 596 lipid species in serum from 4,492 individuals from the Busselton Health Study. The discovery GWAS identified 3,361 independent lipid-loci associations, involving 667 genomic regions (479 previously unreported), with validation in two independent cohorts. A meta-analysis revealed an additional 70 independent genomic regions associated with lipid species. We identified 134 lipid endophenotypes for CAD associated with 186 genomic loci. Associations between independent lipid-loci with coronary atherosclerosis were assessed in ⌠456,000 individuals from the UK Biobank. Of the 53 lipid-loci that showed evidence of association (P \u3c 1 Ă 10â3), 43 loci were associated with at least one lipid endophenotype. These findings illustrate the value of integrative biology to investigate the aetiology of atherosclerosis and CAD, with implications for other complex diseases
Creation of an Open-Access, Mutation-Defined Fibroblast Resource for Neurological Disease Research
Our understanding of the molecular mechanisms of many neurological disorders has been greatly enhanced by the discovery of mutations in genes linked to familial forms of these diseases. These have facilitated the generation of cell and animal models that can be used to understand the underlying molecular pathology. Recently, there has been a surge of interest in the use of patient-derived cells, due to the development of induced pluripotent stem cells and their subsequent differentiation into neurons and glia. Access to patient cell lines carrying the relevant mutations is a limiting factor for many centres wishing to pursue this research. We have therefore generated an open-access collection of fibroblast lines from patients carrying mutations linked to neurological disease. These cell lines have been deposited in the National Institute for Neurological Disorders and Stroke (NINDS) Repository at the Coriell Institute for Medical Research and can be requested by any research group for use in in vitro disease modelling. There are currently 71 mutation-defined cell lines available for request from a wide range of neurological disorders and this collection will be continually expanded. This represents a significant resource that will advance the use of patient cells as disease models by the scientific community
Adaptive Evolution and the Birth of CTCF Binding Sites in the Drosophila Genome
Changes in the physical interaction between cis-regulatory DNA sequences and proteins drive the evolution of gene expression. However, it has proven difficult to accurately quantify evolutionary rates of such binding change or to estimate the relative effects of selection and drift in shaping the binding evolution. Here we examine the genome-wide binding of CTCF in four species of Drosophila separated by between ~2.5 and 25 million years. CTCF is a highly conserved protein known to be associated with insulator sequences in the genomes of human and Drosophila. Although the binding preference for CTCF is highly conserved, we find that CTCF binding itself is highly evolutionarily dynamic and has adaptively evolved. Between species, binding divergence increased linearly with evolutionary distance, and CTCF binding profiles are diverging rapidly at the rate of 2.22% per million years (Myr). At least 89 new CTCF binding sites have originated in the Drosophila melanogaster genome since the most recent common ancestor with Drosophila simulans. Comparing these data to genome sequence data from 37 different strains of Drosophila melanogaster, we detected signatures of selection in both newly gained and evolutionarily conserved binding sites. Newly evolved CTCF binding sites show a significantly stronger signature for positive selection than older sites. Comparative gene expression profiling revealed that expression divergence of genes adjacent to CTCF binding site is significantly associated with the gain and loss of CTCF binding. Further, the birth of new genes is associated with the birth of new CTCF binding sites. Our data indicate that binding of Drosophila CTCF protein has evolved under natural selection, and CTCF binding evolution has shaped both the evolution of gene expression and genome evolution during the birth of new genes
Creation of an Open-Access, Mutation-Defined Fibroblast Resource for Neurological Disease Research
Our understanding of the molecular mechanisms of many neurological disorders has been greatly enhanced by the discovery of mutations in genes linked to familial forms of these diseases. These have facilitated the generation of cell and animal models that can be used to understand the underlying molecular pathology. Recently, there has been a surge of interest in the use of patient-derived cells, due to the development of induced pluripotent stem cells and their subsequent differentiation into neurons and glia. Access to patient cell lines carrying the relevant mutations is a limiting factor for many centres wishing to pursue this research. We have therefore generated an open-access collection of fibroblast lines from patients carrying mutations linked to neurological disease. These cell lines have been deposited in the National Institute for Neurological Disorders and Stroke (NINDS) Repository at the Coriell Institute for Medical Research and can be requested by any research group for use in in vitro disease modelling. There are currently 71 mutation-defined cell lines available for request from a wide range of neurological disorders and this collection will be continually expanded. This represents a significant resource that will advance the use of patient cells as disease models by the scientific community
Informed Conditioning on Clinical Covariates Increases Power in Case-Control Association Studies
Genetic case-control association studies often include data on clinical covariates, such as body mass index (BMI), smoking status, or age, that may modify the underlying genetic risk of case or control samples. For example, in type 2 diabetes, odds ratios for established variants estimated from lowâBMI cases are larger than those estimated from highâBMI cases. An unanswered question is how to use this information to maximize statistical power in case-control studies that ascertain individuals on the basis of phenotype (case-control ascertainment) or phenotype and clinical covariates (case-control-covariate ascertainment). While current approaches improve power in studies with random ascertainment, they often lose power under case-control ascertainment and fail to capture available power increases under case-control-covariate ascertainment. We show that an informed conditioning approach, based on the liability threshold model with parameters informed by external epidemiological information, fully accounts for disease prevalence and non-random ascertainment of phenotype as well as covariates and provides a substantial increase in power while maintaining a properly controlled false-positive rate. Our method outperforms standard case-control association tests with or without covariates, tests of gene x covariate interaction, and previously proposed tests for dealing with covariates in ascertained data, with especially large improvements in the case of case-control-covariate ascertainment. We investigate empirical case-control studies of type 2 diabetes, prostate cancer, lung cancer, breast cancer, rheumatoid arthritis, age-related macular degeneration, and end-stage kidney disease over a total of 89,726 samples. In these datasets, informed conditioning outperforms logistic regression for 115 of the 157 known associated variants investigated (P-valueâ=â1Ă10â9). The improvement varied across diseases with a 16% median increase in Ï2 test statistics and a commensurate increase in power. This suggests that applying our method to existing and future association studies of these diseases may identify novel disease loci
The daily association between affect and alcohol use: a meta-analysis of individual participant data
Influential psychological theories hypothesize that people consume alcohol in response to the experience of both negative and positive emotions. Despite two decades of daily diary and ecological momentary assessment research, it remains unclear whether people consume more alcohol on days they experience higher negative and positive affect in everyday life. In this preregistered meta-analysis, we synthesized the evidence for these daily associations between affect and alcohol use. We included individual participant data from 69 studies (N = 12,394), which used daily and momentary surveys to assess affect and the number of alcoholic drinks consumed. Results indicate that people are not more likely to drink on days they experience high negative affect, but are more likely to drink and drink heavily on days high in positive affect. People self-reporting a motivational tendency to drink-to-cope and drink-to-enhance consumed more alcohol, but not on days they experienced higher negative and positive affect. Results were robust across different operationalizations of affect, study designs, study populations, and individual characteristics. These findings challenge the long-held belief that people drink more alcohol following increases in negative affect. Integrating these findings under different theoretical models and limitations of this field of research, we collectively propose an agenda for future research to explore open questions surrounding affect and alcohol use.The present study was funded by the Canadian Institutes of Health Research Grant MOP-115104 (Roisin M. OâConnor), Canadian Institutes of Health Research Grant MSH-122803 (Roisin M. OâConnor), John A. Hartford Foundation Grant (Paul Sacco), Loyola University Chicago Research Support Grant (Tracy De Hart), National Institute for Occupational Safety and Health Grant T03OH008435 (Cynthia Mohr), National Institutes of Health (NIH) Grant F31AA023447 (Ryan W. Carpenter), NIH Grant R01AA025936 (Kasey G. Creswell), NIH Grant R01AA025969 (Catharine E. Fairbairn), NIH Grant R21AA024156 (Anne M. Fairlie), NIH Grant F31AA024372 (Fallon Goodman), NIH Grant R01DA047247 (Kevin M. King), NIH Grant K01AA026854 (Ashley N. Linden-Carmichael), NIH Grant K01AA022938 (Jennifer E. Merrill), NIH Grant K23AA024808
(Hayley Treloar Padovano), NIH Grant P60AA11998 (Timothy Trull), NIH Grant MH69472 (Timothy Trull), NIH Grant K01DA035153 (Nisha Gottfredson), NIH Grant P50DA039838 (Ashley N. Linden-Carmichael),
NIH Grant K01DA047417 (David M. Lydon-Staley), NIH Grant T32DA037183 (M. Kushner), NIH Grant R21DA038163 (A. Moore), NIH Grant K12DA000167 (M. Potenza, Stephanie S. OâMalley), NIH Grant R01AA025451 (Bruce Bartholow, Thomas M. Piasecki), NIH Grant P50AA03510 (V. Hesselbrock), NIH Grant K01AA13938 (Kristina M. Jackson), NIH Grant K02AA028832 (Kevin M. King), NIH Grant T32AA007455 (M. Larimer), NIH Grant R01AA025037 (Christine M. Lee, M. Patrick), NIH Grant R01AA025611 (Melissa Lewis), NIH Grant R01AA007850 (Robert Miranda), NIH Grant R21AA017273 (Robert Miranda), NIH Grant R03AA014598 (Cynthia Mohr), NIH Grant R29AA09917 (Cynthia Mohr), NIH Grant T32AA07290 (Cynthia Mohr), NIH Grant P01AA019072 (P. Monti), NIH Grant R01AA015553 (J. Morgenstern), NIH Grant R01AA020077 (J. Morgenstern), NIH Grant R21AA017135 (J. Morgenstern), NIH Grant R01AA016621 (Stephanie S. OâMalley), NIH Grant K99AA029459 (Marilyn Piccirillo), NIH Grant F31AA022227 (Nichole Scaglione), NIH Grant R21AA018336 (Katie Witkiewitz), Portuguese State Budget Foundation for Science and Technology Grant UIDB/PSI/01662/2020 (Teresa Freire), University of Washington Population Health COVID-19 Rapid Response Grant (J. Kanter, Adam M. Kuczynski), U.S. Department of Defense Grant W81XWH-13-2-0020 (Cynthia Mohr), SANPSY Laboratory Core Support Grant CNRS USR 3413 (Marc Auriacombe), Social Sciences and Humanities Research Council of Canada Grant (N. Galambos), and Social Sciences and Humanities Research Council of Canada Grant (Andrea L. Howard)
Following the genes: a framework for animal modeling of psychiatric disorders
The number of individual cases of psychiatric disorders that can be ascribed to identified, rare, single mutations is increasing with great rapidity. Such mutations can be recapitulated in mice to generate animal models with direct etiological validity. Defining the underlying pathogenic mechanisms will require an experimental and theoretical framework to make the links from mutation to altered behavior in an animal or psychopathology in a human. Here, we discuss key elements of such a framework, including cell type-based phenotyping, developmental trajectories, linking circuit properties at micro and macro scales and definition of neurobiological phenotypes that are directly translatable to humans
Clinical outcomes and response to treatment of patients receiving topical treatments for pyoderma gangrenosum: a prospective cohort study
Background: pyoderma gangrenosum (PG) is an uncommon dermatosis with a limited evidence base for treatment.
Objective: to estimate the effectiveness of topical therapies in the treatment of PG.
Methods: prospective cohort study of UK secondary care patients with a clinical diagnosis of PG suitable for topical treatment (recruited July 2009 to June 2012). Participants received topical therapy following normal clinical practice (mainly Class I-III topical corticosteroids, tacrolimus 0.03% or 0.1%). Primary outcome: speed of healing at 6 weeks. Secondary outcomes: proportion healed by 6 months; time to healing; global assessment; inflammation; pain; quality-of-life; treatment failure and recurrence.
Results: Sixty-six patients (22 to 85 years) were enrolled. Clobetasol propionate 0.05% was the most commonly prescribed therapy. Overall, 28/66 (43.8%) of ulcers healed by 6 months. Median time-to-healing was 145 days (95% CI: 96 days, â). Initial ulcer size was a significant predictor of time-to-healing (hazard ratio 0.94 (0.88;80 1.00); p = 0.043). Four patients (15%) had a recurrence.
Limitations: No randomised comparator
Conclusion: Topical therapy is potentially an effective first-line treatment for PG that avoids possible side effects associated with systemic therapy. It remains unclear whether more severe disease will respond adequately to topical therapy alone
- âŠ