2,748 research outputs found

    Enlisting in the Military: The Influential Role of Genetic Factors

    Get PDF
    Given that enlistment in the U.S. military is completely voluntary, there has been a great deal of interest in identifying the various factors that might explain why some people join the military, whereas others do not. The current study expanded on this line of literature by estimating the extent to which genetic and environmental factors explained variance in the liability for lifetime participation in the military. Analysis of twin pairs drawn from the National Longitudinal Study of Adolescent to Adult Health (Add Health) revealed that 82% of the variance was the result of genetic factors, 18% of the variance was the result of nonshared environmental factors, and none of the variance was accounted for by shared environmental factors. In light of a number of limitations, replication studies are needed to determine the robustness of these findings and whether they are generalizable to other samples and populations

    The Factory and The Beehive I. Rotation Periods For Low-Mass Stars in Praesepe

    Get PDF
    Stellar rotation periods measured from single-age populations are critical for investigating how stellar angular momentum content evolves over time, how that evolution depends on mass, and how rotation influences the stellar dynamo and the magnetically heated chromosphere and corona. We report rotation periods for 40 late-K to mid-M stars members of the nearby, rich, intermediate-age (~600 Myr) open cluster Praesepe. These rotation periods were derived from ~200 observations taken by the Palomar Transient Factory of four cluster fields from 2010 February to May. Our measurements indicate that Praesepe's mass-period relation transitions from a well-defined singular relation to a more scattered distribution of both fast and slow rotators at ~0.6 Msun. The location of this transition is broadly consistent with expectations based on observations of younger clusters and the assumption that stellar-spin down is the dominant mechanism influencing angular momentum evolution at 600 Myr. However, a comparison to data recently published for the Hyades, assumed to be coeval to Praesepe, indicates that the divergence from a singular mass-period relation occurs at different characteristic masses, strengthening the finding that Praesepe is the younger of the two clusters. We also use previously published relations describing the evolution of rotation periods as a function of color and mass to evolve the sample of Praesepe periods in time. Comparing the resulting predictions to periods measured in M35 and NGC 2516 (~150 Myr) and for kinematically selected young and old field star populations suggests that stellar spin-down may progress more slowly than described by these relations.Comment: To appear in the ApJ. 18 pages, 12 figures; version with higher resolution figures available at http://www.astro.columbia.edu/~marcel/papers/praesepe.pdf. Paper title inspired by local news; see http://tinyurl.com/redhone

    Evidence of Titan's Climate History from Evaporite Distribution

    Full text link
    Water-ice-poor, 5-μ\mum-bright material on Saturn's moon Titan has previously been geomorphologically identified as evaporitic. Here we present a global distribution of the occurrences of the 5-μ\mum-bright spectral unit, identified with Cassini's Visual Infrared Mapping Spectrometer (VIMS) and examined with RADAR when possible. We explore the possibility that each of these occurrences are evaporite deposits. The 5-μ\mum-bright material covers 1\% of Titan's surface and is not limited to the poles (the only regions with extensive, long-lived surface liquid). We find the greatest areal concentration to be in the equatorial basins Tui Regio and Hotei Regio. Our interpretations, based on the correlation between 5-μ\mum-bright material and lakebeds, imply that there was enough liquid present at some time to create the observed 5-μ\mum-bright material. We address the climate implications surrounding a lack of evaporitic material at the south polar basins: if the south pole basins were filled at some point in the past, then where is the evaporite

    A Quantitative Genetic Analysis of the Associations Among Language Skills, Peer Interactions, and Behavioral Problems in Childhood: Results From a Sample of Twins

    Get PDF
    A body of empirical research has revealed that there are associations among language skills, peer interactions, and behavioral problems in childhood. At the same time, however, there has been comparatively less research devoted to exploring the mutual unfolding of these factors over the first few years of life. The current study is designed to partially address this gap in the literature by examining how language skills, negative peer interactions, and behavioral problems are interrelated in a sample of twins drawn from the Early Childhood Longitudinal Study–Birth Cohort (ECLS-B). Employing a quantitative genetic framework, the results of the current study revealed that variance in language skills, negative peer interactions, and externalizing behavioral problems were all due to a combination of genetic and environmental factors. Bivariate Cholesky models indicated that most of the covariance among language skills, negative peer interactions, and externalizing behavioral problems was due to common genetic factors. Additional analyses using a modified DeFries–Fulker approach nested within a path model revealed a bidirectional association between negative peer interactions and externalizing behavioral problems, wherein there appeared to be feedback loops between the two. Implications of the results are discussed and avenues for future research are offered

    Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability

    Get PDF
    Experimental testing is an important aspect of validating complex integrated safety critical aircraft technologies. The Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed is being developed at NASA Langley to validate technologies under conditions that cannot be flight validated with full-scale vehicles. The AirSTAR capability comprises a series of flying sub-scale models, associated ground-support equipment, and a base research station at NASA Langley. The subscale model capability utilizes a generic 5.5% scaled transport class vehicle known as the Generic Transport Model (GTM). The AirSTAR Ground Facilities encompass the hardware and software infrastructure necessary to provide comprehensive support services for the GTM testbed. The ground facilities support remote piloting of the GTM aircraft, and include all subsystems required for data/video telemetry, experimental flight control algorithm implementation and evaluation, GTM simulation, data recording/archiving, and audio communications. The ground facilities include a self-contained, motorized vehicle serving as a mobile research command/operations center, capable of deployment to remote sites when conducting GTM flight experiments. The ground facilities also include a laboratory based at NASA LaRC providing near identical capabilities as the mobile command/operations center, as well as the capability to receive data/video/audio from, and send data/audio to the mobile command/operations center during GTM flight experiments

    Is climate sensitivity related to dynamical sensitivity? A Southern Hemisphere perspective

    Get PDF
    This study examines whether the spread in the climate sensitivity of Coupled Model Intercomparison Project Phase 5 (CMIP5) models also captures the spread in the Southern Hemisphere dynamical response to greenhouse gas forcing. Three metrics are proposed to quantify the “dynamical sensitivity” of the Southern Hemisphere: the poleward expansion of the Hadley circulation, the poleward expansion of the subtropical dry zone, and the poleward shift of the midlatitude jet. In the CMIP5 abrupt 4 × CO₂ integrations, the expansion of the Hadley circulation is well correlated with climate sensitivity in all seasons; in contrast, the shifts in the subtropical dry zone and midlatitude jet are significantly correlated with climate sensitivity only in summer and fall. In winter, those responses are more strongly linked to the control climatology in each model. Thus, a narrow focus on traditional climate sensitivity alone might miss out on important features of the atmospheric circulation's response to increasing greenhouse gases, particularly in the extratropics

    Galaxy Zoo: The large-scale spin statistics of spiral galaxies in the Sloan Digital Sky Survey

    Get PDF
    We re-examine the evidence for a violation of large-scale statistical isotropy in the distribution of projected spin vectors of spiral galaxies. We have a sample of 37,000\sim 37,000 spiral galaxies from the Sloan Digital Sky Survey, with their line of sight spin direction confidently classified by members of the public through the online project Galaxy Zoo. After establishing and correcting for a certain level of bias in our handedness results we find the winding sense of the galaxies to be consistent with statistical isotropy. In particular we find no significant dipole signal, and thus no evidence for overall preferred handedness of the Universe. We compare this result to those of other authors and conclude that these may also be affected and explained by a bias effect.Comment: Accepted for publication in MNRAS. 8 pages, 5 figure

    A Comparative Study of Three Different Chemical Vapor Deposition Techniques of Carbon Nanotube Growth on Diamond Films

    Get PDF
    This paper compares between the methods of growing carbon nanotubes (CNTs) on diamond substrates and evaluates the quality of the CNTs and the interfacial strength. One potential application for these materials is a heat sink/spreader for high-power electronic devices. The CNTs and diamond substrates have a significantly higher specific thermal conductivity than traditional heat sink/spreader materials making them good replacement candidates. Only limited research has been performed on these CNT/diamond structures and their suitability of different growth methods. This study investigates three potential chemical vapor deposition (CVD) techniques for growing CNTs on diamond: thermal CVD (T-CVD), microwave plasma-enhanced CVD (MPE-CVD), and floating catalyst thermal CVD (FCT-CVD). Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (TEM) were used to analyze the morphology and topology of the CNTs. Raman spectroscopy was used to assess the quality of the CNTs by determining the ID/IG peak intensity ratios. Additionally, the CNT/diamond samples were sonicated for qualitative comparisons of the durability of the CNT forests. T-CVD provided the largest diameter tubes, with catalysts residing mainly at the CNT/diamond interface. The MPE-CVD process yielded non uniform defective CNTs, and FCT-CVD resulted in the smallest diameter CNTs with catalyst particles imbedded throughout the length of the nanotubes
    corecore