114 research outputs found
Shark Bay World Heritage Property: Summary of public submissions to the draft management plan for fish resources
In November 1994, the draft management plan for fish resources for the Shark Bay World Heritage Area (Fisheries Management Paper no 72) was released for public comment. This report summarises and analyses the 28 written public submissions received to the draft fisheries management plan
Arsenic Species in Marine Samples
Arsenic occurs in seawater, in predominantly inorganic forms, at concentrations of about 1-2 μg/L. These concentrations are higher than those of most other potentially toxic metals and semimetals. Marine organisms have coped by exploiting the rich organic chemistry of arsenic to transform inorganic arsenic into a range of essentially non-toxic organoarsenic compounds. The resulting diversity of arsenic species found in marine samples is reviewed together with an overview of analytical methods for their determination. The relevance of the chemical form of arsenic to its bioavailability to marine organisms is also discussed
Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae
Fourteen arsenolipids, including 11 new compounds, were identified and quantified in two species of brown algae, Wakame (Undaria pinnatifida) and Hijiki (Hizikia fusiformis), by high resolution mass spectrometry, high performance liquid chromatography–mass spectrometry and gas chromatography–mass spectrometry. Both algal species contained arsenosugar-phospholipids as the major type of arsenolipid, and arsenic-hydrocarbons were also significant components, particularly in Hijiki. The origin of the various arsenolipids, and the possible significance of their relative quantities, is briefly discussed
Determination of water and lipid-soluble arsenic compounds in the commercial edible seaweed Hijiki (Hizikia fusiforme)
Se presentan los resultados obtenidos en los estudios de especiación de arsénico realizados sobre el alga comestible Hijiki. Los análisis se realizaron a través de métodos analíticos desarrollados en la UPM (España) y en la Universidad de Graz (Austria). La determinación de especies hidrosolubles se realizó mediante HPLC-(UV)-HG-AFS, previa extracción mediante MAE con agua desionizada. Por otro lado, la identificación y cuantificación de arsenolípidos se llevó a cabo mediante HPLC-ICPMS/ESMS, previa extracción con cloroformo:metanol y purificación mediante SPE
Salivary and gut microbiomes play a significant role in in vitro oral bioaccessibility, biotransformation, and intestinal absorption of arsenic from food
The release of a toxicant from a food matrix during the gastrointestinal digestion is a crucial determinant of the toxicant's oral bioavailability. We present a modified setup of the human simulator of the gut microbial ecosystem (SHIME), with four sequential gastrointestinal reactors (oral, stomach, small intestine, and colon), including the salivary and colonic microbiomes. Naturally arsenic-containing rice, mussels, and nori seaweed were digested in the presence of microorganisms and in vitro oral bioaccessibility, bioavailability, and metabolism of arsenic species were evaluated following analysis by using HPLC/mass spectrometry. When food matrices were digested with salivary bacteria, the soluble arsenic in the gastric digestion stage increased for mussel and nori samples, but no coincidence impact was found in the small intestinal and colonic digestion stages. However, the simulated small intestinal absorption of arsenic was increased in all food matrices (1.2-2.7 fold higher) following digestion with salivary microorganisms. No significant transformation of the arsenic species occurred except for the arsenosugars present in mussels and nori. In those samples, conversions between the oxo arsenosugars were observed in the small intestinal digestion stage whereupon the thioxo analogs became major metabolites. These results expand our knowledge on the likely metabolism and oral bioavailabiltiy of arsenic during human digestion, and provide valuable information for future risk assessments of dietary arsenic
Association of Cardiometabolic Genes with Arsenic Metabolism Biomarkers in American Indian Communities: The Strong Heart Family Study (SHFS)
Background: Metabolism of inorganic arsenic (iAs) is subject to inter-individual variability, which is explained partly by genetic determinants. Objectives: We investigated the association of genetic variants with arsenic species and principal components of arsenic species in the Strong Heart Family Study (SHFS). Methods: We examined variants previously associated with cardiometabolic traits (~ 200,000 from Illumina Cardio MetaboChip) or arsenic metabolism and toxicity (670) among 2,428 American Indian participants in the SHFS. Urine arsenic species were measured by high performance liquid chromatography–inductively coupled plasma mass spectrometry (HPLC-ICP-MS), and percent arsenic species [iAs, monomethylarsonate (MMA), and dimethylarsinate (DMA), divided by their sum × 100] were logit transformed. We created two orthogonal principal components that summarized iAs, MMA, and DMA and were also phenotypes for genetic analyses. Linear regression was performed for each phenotype, dependent on allele dosage of the variant. Models accounted for familial relatedness and were adjusted for age, sex, total arsenic levels, and population stratification. Single nucleotide polymorphism (SNP) associations were stratified by study site and were meta-analyzed. Bonferroni correction was used to account for multiple testing. Results: Variants at 10q24 were statistically significant for all percent arsenic species and principal components of arsenic species. The index SNP for iAs%, MMA%, and DMA% (rs12768205) and for the principal components (rs3740394, rs3740393) were located near AS3MT, whose gene product catalyzes methylation of iAs to MMA and DMA. Among the candidate arsenic variant associations, functional SNPs in AS3MT and 10q24 were most significant (p \u3c 9.33 × 10–5). Conclusions: This hypothesis-driven association study supports the role of common variants in arsenic metabolism, particularly AS3MT and 10q24
- …