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ABSTRACT: The release of a toxicant from a food matrix during the gastrointestinal digestion is a crucial determinant of the
toxicant’s oral bioavailability. We present a modified setup of the human simulator of the gut microbial ecosystem (SHIME),
with four sequential gastrointestinal reactors (oral, stomach, small intestine, and colon), including the salivary and colonic
microbiomes. Naturally arsenic-containing rice, mussels, and nori seaweed were digested in the presence of microorganisms and
in vitro oral bioaccessibility, bioavailability, and metabolism of arsenic species were evaluated following analysis by using HPLC/
mass spectrometry. When food matrices were digested with salivary bacteria, the soluble arsenic in the gastric digestion stage
increased for mussel and nori samples, but no coincidence impact was found in the small intestinal and colonic digestion stages.
However, the simulated small intestinal absorption of arsenic was increased in all food matrices (1.2−2.7 fold higher) following
digestion with salivary microorganisms. No significant transformation of the arsenic species occurred except for the arsenosugars
present in mussels and nori. In those samples, conversions between the oxo arsenosugars were observed in the small intestinal
digestion stage whereupon the thioxo analogs became major metabolites. These results expand our knowledge on the likely
metabolism and oral bioavailabiltiy of arsenic during human digestion, and provide valuable information for future risk
assessments of dietary arsenic.

■ INTRODUCTION

Humans are exposed to arsenic, a highly toxic element,
primarily through dietary sources such as drinking water, rice,
and seafood.1 Epidemiological and toxicological research over
many years has established the toxic nature of inorganic arsenic
(iAs), even at low levels, and led to regulations in many
countries that set maximum permissible concentrations of
arsenic in water and rice.1−6

In vitro oral bioaccessibility testing has been adopted as a
conservative estimator of contaminant bioavailability. Most of
the current in vitro methods incorporate physicochemical
parameters (e.g., temperature, pH, enzymatic activity),7−11

however, the impact of the microbial component, widely
present in the colonic, but also in the oral environments, is not

typically considered in in vitro models. Earlier work showed
that anaerobic microbiota from mouse or human origin
converted aqueous standards or iAs in soils into simple
methylated oxyarsenicals and thioxo analogs.12−14 Thioxo-
arsenicals show toxicity toward human cells,15−18 in particular,
thioxo-DMA has shown strong cytotoxic effects in cultured
human bladder cells.18 Furthermore, thioxo-arsenosugars have
higher intestinal bioavailability compared to the oxo-arsen-
osugars.17 Thus, a risk assessment of dietary arsenic should
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consider not only the amount of arsenic and its chemical form,
but also its bioaccessibility and metabolism. Moreover, the gut
microbiome is involved in maintaining the intestinal barrier
integrity, which is an essential factor in the arsenic
bioavailability process.19 Thus, the gut microbiome through
its interaction with the food matrix and with the host, may play
a substantial role in arsenic toxicokinetics.
The main aim of this research was, therefore, to optimize in

vitro gastrointestinal model systems by incorporating micro-
biota from the oral and colonic environment and evaluate to
what extent microbial presence is an important determinant of
oral arsenic bioaccessibility, bioavailability, and arsenic
speciation profiles. We use HPLC/mass spectrometry to
follow the biotransformation of the natural arsenic compounds
in the foods in order to evaluate the metabolic potential of the
microbiome and the influence of microbiota as determinants of
oral arsenic bioaccessibility and intestinal transport.

■ MATERIALS AND METHODS
Reagents used in the investigation were of analytical or reagent
grade. Reagents used in this research were purchased from
Merck KGaA, Darmstadt, Germany, unless otherwise stated.
Water used for experiments was purified (18.2 MΩ cm) with a
Millipore purification system (Millipore GmbH, Vienna,
Austria or Millipore Inc., Belgium).
Arsenic Quantification. Plastic and glassware material was

treated with 10% HNO3 (v/v) for 24 h, and then rinsed with
deionized water before use. Reagents and standard solutions of
arsenic used for identification and quantification of arsenic
species are described in SI Methods S1. For quality control, we
used the certified reference material (CRM) IAEA 407
(homogenized fish tissue) from International Atomic Energy
Agency (Vienna, Austria), CRM 7405-a (Hijiki) from National
Metrology Institute of Japan (Tsukuba, Ibaraki, Japan), and
ERM-BC211 (rice flour) from Sigma-Aldrich (Vienna,
Austria) (SI Table S1).
Total arsenic measurements were performed on the

microwave-assisted acid mineralized samples (UltraCLAVE
IV Microwave Reactor; MLS GmbH, Leutkirch, Germany) by
using an Agilent 7900 ICP-MS (Agilent Technologies,
Waldbronn, Germany). Arsenic speciation was performed by
HPLC (Agilent 1260 Infinity HPLC system) coupled in
parallel with an inductively coupled plasma mass spectrometer
(ICP-MS, Agilent 7900) and electrospray ionization tandem
mass spectrometer (ESI−MS−MS, Agilent 6460). Detailed
information about determination of total arsenic, extraction
procedure, and determination of arsenic species is provided as
SI Methods S2−S4. For the structures of typical arsenic species
see SI Figure S1. Full details of the operating conditions for the
analyses by HPLC-ICP−MS/ESI−MS−MS were provided in
SI Table S2. MRM transitions and optimum conditions for
determining arsenic species by MS/MS analysis were listed in
SI Table S3.
Food Samples. Three batches of brown rice (Oriza sativa),

mussels (Mytilus edulis), and laminated nori seaweed (Porphyra
tenera) were purchased at different supermarkets in Ghent
(Belgium). Rice was washed twice with 1:10 (w/w) water and
once drained, it was cooked in a stainless steel stewpot with 1:3
(w/w) water for 30 min. Mussels were rinsed with water (1:10,
w/w) two times and steamed in a stainless steel stewpot for 10
min without adding cooking water. Nonedible portions
(valves) were removed and liquid and edible parts were
mixed. Nori seaweed was roasted 15 s in a preheated Teflon

pan. After cooking, food matrices were homogenized by using
a Thermomix food processor (Vorwerk, Spain M.S.L, S.C) at
highest speed until obtaining a soft texture (mussels, rice) or a
powder (nori).

In Vitro Gastrointestinal Digestion and Fermenta-
tion. Foods were digested using a semicontinuous simulation
of the digestion process, modified from the SHIME with four
stages: oral, gastric, small intestine, and colon. A schematic
representation of the in vitro digestion is given in the SI Figure
S2.
The prepared samples of rice (90 g), mussels (50 g), and

nori (2.5 g) were added to double-jacketed reactors maintained
at 37 °C under continuous stirring. As a control, sterile water
samples (50 g) were used. The amount of food was estimated
on representative quantities of daily intakes for the European
population.24 The in vitro digestions were run in parallel and
tested in duplicate. Samples were mixed with a simulated
salivary fluid (SSF) in a ratio of 1:1 (w/w) for rice, mussels
and control, and in a ratio of 1:20 (w/w) for nori. The higher
ratio of SSF/sample for nori was selected to mimic the dilution
of the 2.5 g of sample with digestive fluids in a real theoretical
scenario. Oral digestion was performed for 2 min. The SSF was
used either supplemented with salivary bacteria or not
supplemented. SSF with bacteria was obtained by resuspending
the pellet obtained after centrifugation25,26 (15 min, 9000g) of
100 mL of saliva from a pool of 5 donors with 100 mL of SSF.
To emulate the gastric stage of the digestion, the pH was

adjusted to 3 with 1 M HCl by using a pH electrode coupled
to a pH controller (Consort R301) and a Master Flex pump
drive (Cole-Parmer Instrument Company, LLC). Then, gastric
simulated fluid (GSF) was added (1:1, w/w). The gastric
digestion was maintained for 2 h. For the intestinal digestion,
the pH value was raised to 6.5 by addition of 1 M NaOH.
Then, the simulated intestinal fluid (SIF) was added (1:1, w/
w). Incubation at 37 °C and continuous stirring were
maintained for 2 h. Colonic digestion was performed by
adding anaerobic nutritional medium (1:1, v/v) and flushing
the reactors with N2 for 15 min to create anaerobic conditions.
After flushing, fecal inoculum (20%, w/v) diluted in anaerobic
PBS (pool offive donors, the same as for the saliva pool) was
added to the vessels in a proportion of 1:10 (v/v). Information
about the origin of the salivary and fecal samples is showed in
SI Table S4. Detailed methodology for inocula preparation is
described in SI Method S5.
The pH was adjusted to 5.6−5.9 with 1 M HCl and

maintained in this range by adding 0.5 M HCl or 0.5 M
NaOH. The system was flushed with N2 for 15 min more and
incubated 24 h at 37 °C and constant stirring.
Detailed composition of SSF, GSF, SIF, and nutritional

medium for colonic fermentation is described in SI Methods
S6.
At the end of each of the four digestion step, samples were

obtained and pH values recorded. Samples were centrifuged
9509g/10 min at 4 °C and the supernatant was filtered
(Whatman qualitative filter paper, grade 1, 11 μm, Millipore,
Belgium). Samples for bioaccessibility and arsenic biotransfor-
mation assays were freeze-dried (Heto Powerdry PL3000
Thermo, Denmark) for further analysis. We defined bioacces-
sible arsenic as the amount of arsenic released from the matrix
and which is soluble after the centrifugation and filtration
steps. We calculated the % of bioaccessible arsenic considering
the total arsenic quantification. The values above 100% may be
most likely caused by the complexity of the experimental

Environmental Science & Technology Article

DOI: 10.1021/acs.est.8b04457
Environ. Sci. Technol. 2018, 52, 14422−14435

14423

http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b04457/suppl_file/es8b04457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b04457/suppl_file/es8b04457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b04457/suppl_file/es8b04457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b04457/suppl_file/es8b04457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b04457/suppl_file/es8b04457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b04457/suppl_file/es8b04457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b04457/suppl_file/es8b04457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b04457/suppl_file/es8b04457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b04457/suppl_file/es8b04457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b04457/suppl_file/es8b04457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b04457/suppl_file/es8b04457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b04457/suppl_file/es8b04457_si_001.pdf
http://dx.doi.org/10.1021/acs.est.8b04457


model, combined human samples and food matrices in a
complex mixture of gastrointestinal fluids. The sampling,
subsampling, and processing (e.g., freeze-drying) could
introduce an experimental variation which causes the observed
deviations.
Samples for cell culture assays were filter sterilized (0.22 μm;

Millipore, Belgium), and pH and osmolarity were adjusted to
7.2 ± 0.2 and 290 ± 15 mOsM/kg, respectively. All
gastrointestinal digestion stages containing salivary bacteria
will be referred to as bacteria-conditioned and those without
salivary bacteria as nonbacteria-conditioned. Control samples
will be considered as digestive fluids without food matrices.
Cell Cultures. Caco-2 (ECACC 86010202) and HT29-

MTX-E12 (ECACC 12040401) cells were obtained from the
European Collection of Authenticated Cell Cultures. Cell
maintenance was carried out routinely as described in
Calatayud et al. 2011.20 All the cultures were used between
passages 50 and 60.
Cell differentiation and the posterior tests were carried out

in double chamber wells (Corning HTS Transwell-24 well,
pore size 0.4 μm; Costar Corp., NY). The cells were seeded at
a density of 7.5 × 104 cells/cm2 in a proportion of 90/10 and
70/30 Caco-2/HT29-MTX for resembling the small intestine
and colon epithelium, respectively, and maintained with
Dulbecco’s Modified Eagle’s Medium-high glucose (4.5 g/L)
(DMEM), supplemented with 10% (v/v) heat-inactivated
Fetal Bovine Serum (iFBS, Greiner Bio-One, Wemmel,
Belgium), 1% (v/v) GlutaMAX (Gibco, Life Technologies
Europe BV), and 1% penicillin/streptomycin (Life Technol-
ogies, Merelbeke, Belgium) until differentiation (15 days).
Then, DMEM was removed and cells were washed twice with
0.2 mL of Hanks Balanced Salt Solution (HBSS). The cell
monolayer resembling the colon was covered by 50 μL of a
biosimilar mucus layer prepared as described in Boegh et al.
2014.21

Apparent Permeability Coefficient (Papp) of Arsenic
and Arsenic Cellular Uptake. One mL of HBSS was added
to the basolateral compartment and the filter-sterilized
supernatants from the small intestine and colonic digestion
were diluted in HBSS (v/v) 1:2 (rice samples, small intestine),

1:5 (rice samples, colon), 1:10 (nori and control samples, small
intestine), 1:20 (nori, mussel, and control samples, colon), and
added to the apical chambers (0.2 mL).
The control condition consisted of the simulated digestion

fluids (small intestine or colon), not containing any dietary
matrix, and in absence or presence of salivary bacteria, spiked
with As(V) 100 μg/L.
For permeability assays, samples from the basolateral

compartment (0.5 mL) were obtained at 30, 60, and 120
min (small intestine) and at 60, 240, 1440 min (colon), and
replaced with HBSS. During the transport assays, cell
monolayers were kept under stirring conditions (60 rpm) in
a shaker (ROCKER 3D basic, IKA, Belgium), at 37 °C, 90%
humidity and 10% CO2. At the end of the permeability assay
(small intestine model: 2 h; colon model: 24 h), cell
monolayers were washed twice with HBSS. The apical and
basal media and the cells were recovered, digested with 65%
HNO3/30% H2O2 (2:1 v/v) 90 °C, 4h, in a proportion to the
sample of 1:1 (v/v), and filtered (0.45 μm, PTFE; Metrohm
Belgium N.V.) before analysis. Tests were evaluated
independently at least in triplicate. Percentage of cell uptake
and cell uptake + transport (total uptake) was calculated with
respect to the total arsenic content added to the apical
compartment. The Papp of arsenic was calculated as described
in Calatayud et al., 2010.22

Assessment of the Epithelial Barrier Function: TEER
and Papp of LY. During the period of growth and
differentiation, cell monolayer integrity was monitored every
2−3 days, measuring the transepithelial electrical resistance
(TEER) with a Millicell-ERS (Merck KGaA, Darmstadt,
Germany). The reported values were calculated as described
by Srinivasan et al., 2015.23 The cell monolayer was considered
completely formed when stable TEER values were obtained
(≥80 Ω cm2). Monolayer integrity was also evaluated by
calculating the Papp of the paracellular transport marker
Lucifer Yellow (LY) as described in Calatayud et al., 2010,22

using a microplate fluorescence reader (Spectramax Gemini XS
Microplate Reader, Molecular devices, Orleans, CA).
Results of TEER are expressed as a percentage of TEER

after 2 h (small intestine) or 24 h (colon) of exposure to

Table 1. Arsenic Species [Arsenic in μg; % (Arsenic μg of Each Species/Sum of Species)] in Initial and Gastrointestinal
Digested Mussel Samples

food matrix
initial mussel
(244 μg As)

gastrointestinal digested mussel

stage gastric small intestinal colonic

salivary bacteria without with without with without with

unit μg % μg % μg % μg % μg % μg % μg %

AB 61 60 40 53 67 53 62 53 59 52 62 51 80 51
Oxo-AsSug-glycerol 10 9 11 15 18 14 16 13 15 13 18 14 30 19
unknown(1) 2 2 1 1 2 2 4 3 2 2 5 4 5 3
AC 1 1 1 1 1 1 3 2 3 3 2 2 3 2
unknown(2) 2 2 2 3 3 3 3 3 4 3 3 3 3 2
TETRA 2 2 3 4 5 4 2 2 3 3 1 1 2 2
DMA 2 2 2 2 3 3 4 3 3 3 4 3 5 3
Oxo-AsSug-phosphorylglycerol 8 8 11 15 19 15 14 12 15 13 16 13 19 12
As(V) 1 1 1 1 1 1 2 1 2 1 1 1 1 1
unknown(3) 1 1 1 1 2 1 1 1 1 1 2 1 2 1
thioxo-AsSug-Glycerol 4 4 <0.2 <0.2 2 2 1 1 1 1 <0.2
unknown(4) 2 2 2 3 4 3 3 2 3 3 4 3 5 3
thioxo-AsSug-phosphorylglycerol 5 5 <0.2 <0.2 2 2 1 1 2 2 <0.2
sum of species 103 100 75 100 126 100 118 100 113 100 122 100 157 100
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different digests, compared to the initial TEER values in the
individual wells.
Mitochondrial Metabolic Activity Assay. The cells were

grown in Transwell inserts and exposed to the supernatants
from the small intestine and colonic digestion as previously
described. After 2 h (small intestine model) or 24 h (colon
model) the cells were washed with phosphate buffered saline
(PBS) (Gibco, Belgium). Resazurin test (7-hydroxy- 3H-
phenoxazin-3-one-10-oxide sodium salt) was performed as
described by Calatayud et al. 201327 and a Spectramax Gemini
XS Microplate Reader was used for quantification of resorufin
(560Ex/590Em) in the apical media. The results were
expressed as percentages of resazurin reduction with respect
to the fluorescence from cells exposed to the simulated
digestion fluids without food matrix.
Protein Quantification. The cellular protein content was

evaluated by the Bradford dye-binding method (BioRad,
Belgium), following the instructions of the manufacturer.
Statistical Analysis. The statistical analysis was performed

on SigmaPlot 13 software (Systat Software Inc., UK). The
significance level was set at 0.05. Normality of the data set was
tested with the Kolmogorov−Smirnov test. In case of
normality, mean values of two different groups were compared
with an independent samples t test. Significant differences
between treatments were tested with one way ANOVA in case
of normality. Homogeneity of variances was tested with the
Modified Levene test. Depending on the outcome of the
Levene test, Bonferroni or Dunnett T3 were used as post hoc
tests to determine p-values. In case of non-normal distribu-
tions, differences were tested with nonparametric Mann−
Whitney U test. Pearson Product Moment Correlation
coefficient was calculated to assess the possible linear
correlation between different variables.

■ RESULTS AND DISCUSSION

Salivary Bacteria Significantly Modify Arsenic Bio-
accessibility Dependent on Food Matrix and Digestion
Stage. Mussels. The total arsenic content found in the mussel
sample (23.4 ± 3.0 mg kg−1 dry weight, dw) was higher than
previously reported values 9.15−17.48 μg g−1 dw.28 The initial
mussel sample contained mainly arsenobetaine and arsen-
osugars (Table 1, SI Figure S3 and S4), which was the
expected arsenic species pattern based on many previous
studies.29−31 High concentrations of iAs (up to 5.8 mg kg−1

ww) and other organic arsenicals (e.g thio-arsenosugars) have

also been described occasionally in fresh and processed mussel
samples.29,32

Arsenic bioaccessibility values for digested mussels in the
absence of salivary bacteria ranged from 23 to 54% (Figure 1).
The presence of salivary bacteria significantly (p < 0.05)
increased the arsenic bioaccessibility in the oral (29 ± 0.3%),
gastric (55 ± 3%), and colon (72 ± 9%) reactors by a factor of
1.3, 1.6, and 1.7 (Figure 1). Independent of the effect of the
salivary bacteria, the high solubility of arsenic in the oral
digestion (14 to 42%) indicates a significant release from food
at an early digestion stage. Our findings agree with Leufroy et
al., 2012 who demonstrated that the arsenic released by saliva
represents at least half of the bioaccessible arsenic in seafood
certified reference materials and real seafood samples.33

Despite the fast transit time of the food in the oral cavity,
high bioaccessibility values in the mouth could lead to
increased absorption in the proximal sections of the gastro-
intestinal tract.
Mussels contain collagenous molecules,34 which can be

partially degraded by α-amylase. α-Amylase is one of the
principal enzymes of the saliva35 and that this enzyme releases
acid glycosaminoglycan from various connective tissues.36 The
removal of glycoproteic fraction of the collagen is required for
further collagenase digestion. We removed the host α-amylase
during the centrifugation process but previous research has
reported α-amylase activity in different bacterial strains from
human and environmental samples.37,38 The initial process of
the mussels digestion in the oral reactor may affect food matrix
structure and further digestion in the lower compartments.
Moreover, recent research has shown that human salivary
amylase gene copy number impacts oral and gut micro-
biomes,35 supporting the hypothesis of a close interplay
between the oral cavity and gut microbiomes and the host.
It has been reported that mussel consumption could result in

the provisional tolerable weekly intake for iAs being
exceeded.29 Despite the high arsenic concentration in the
tested mussels, we found the % of iAs to be quite low (0.43%
of total arsenic). An increased release of arsenobetaine in the
oral cavity may thus cause a larger absorption in the small
intestine, but there are no known consequences for risk
assessment up to now.

Nori Seaweed. In our study, the total arsenic content in nori
samples was 18.3 ± 2.9 mg/kg−1 dw. The percentage of total
arsenic bioaccessible varied from 30 ± 2% (oral reactor,
bacteria-conditioned) to 136 ± 0.7% (colon reactor, non-
conditioned) (Figure 1). Previous research reported in vitro

Figure 1. Bars represent the percentage of arsenic bioaccessibility from mussels, nori, and rice in the different digestion steps [oral, stomach, small
intestine (SI), and colon] in absence (white bars) or presence (gray bars) of salivary bacteria. The percentage of arsenic solubilized from the food
matrix was calculated with respect to the total arsenic content in the original sample (mean ± standard deviation; n = 2). Significant differences (p
< 0.05) comparing the absence and presence of salivary bacteria are marked by an asterisk (*).
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total arsenic bioaccessibiltiy in Porphyra spp. between 67 and
87% (raw) and 80−106% (cooked).39,40 For dialyzable arsenic
in the red alga (Porphyra umbilicalis), however, Garciá-Sartal et
al.33 observed much lower values of 17.0% (raw) and 15.3%
(cooked).
Interestingly, the arsenic bioaccessibility from nori was

increased by salivary bacteria in the stomach and small
intestine from ∼60 to ∼100% (Figure 1).
Previous research has reported carbohydrate active enzymes

in the human gut,41,42 involved in the agarolytic pathway43

which allows for agarose saccharification into 3-O-β-D-
galactose (GAL) and 4-O-α-3,6-anhydro-L-galactose (AHG).
Despite the bacterium containing this specific enzymatic
activity was only isolated in Japanese and Chinese individuals,
it is possible that this enzymatic activity was also present in the
microbiomes of one or multiple donors of this study. The
degradation of complex polysaccharides from nori to GAL and
AHG may cause the release of arsenic in the form of inorganic
arsenic.
Moreover, in the presence of salivary bacteria, the amount of

iAs in the gastric, small intestine and colon compartments in
nori samples increased 8, 2, and 3 times respectively (Table 2).
It has been shown that iAs induces oxidative stress,
inflammation, cell cycle alterations, changes in protein
expression in intestinal cells, and epithelial barrier impair-
ment,27,44 besides being a well-recognized human carcino-
gen.45

Previous data showed that conventional mice methylate and
absorb iAs to the same extent as germfree mice,46 thus gut
microorganisms may have a negligible effect on biotranforma-
tion and absorption of iAs in an in vivo mice model. However,
the bioaccessible arsenic in the lumen of the stomach, small
intestine, and colon can be affected by the presence of
microorganisms. Taking into account the small intestine as the
main site of arsenic absorption, the increase in bioaccessibility
may result in higher internal exposure after nori intake, but also
in a higher local exposure of intestinal cells and the mucosal
niche to different arsenic species. Previous research has shown
that As(III) induced erosion of bacterial biofilms adjacent to
the mucosal lining and changes in the diversity and abundance
of morphologically distinct species indicated changes in
microbial community structure.47 The effect of other arsenical
species in the host−microbiome interface is still unknown.
Rice. Total arsenic content in the rice used in our studies

was 0.22 ± 0.01 mg/kg−1 dw. The percentage of arsenic
bioaccessible at different digestion stages varied from 14 ± 3%
(oral reactor, bacteria-conditioned) to 117 ± 3% (colon rector,

nonbacteria-conditioned). Trenary et al. 2012 found that the
bioaccessible arsenic in cooked brown rice during synthetic
gastrointestinal extraction ranged from 58% to 64%;48 Laparra
et al. 2005 found that the bioaccessible fraction accounted for
more than 90% of the total arsenic content of cooked whole
grain rice after simulated gastrointestinal digestion;49 and He
et al. 2012 found the extractable arsenic ranged from 53% to
102% after rice was treated with in vitro artificial gastro-
intestinal fluid.50

In the presence of salivary bacteria along the gastrointestinal
digestion, the % of arsenic bioaccessible decreased from 36 ±
2% to 14 ± 3% (oral), and from 117 ± 3% to 89 ± 10%
(colon), a trend that was also observed in nori samples (Figure
1). Salivary bacteria did not affect the arsenic bioaccessibility in
the gastric and small intestinal digestion. A possible
explanation for our findings is that iAs has chemical similarity
to substrates of membrane transporter proteins of bacterial
cells. The uptake of iAs by aquaglyceroproteins (e.g., GlpF)51

or phosphate transporters (e.g., Pit and Pst) has been
previously described.52 The centrifugation of the samples
(9509 g, 10 min) can remove the microorganisms containing
arsenic from the bioaccessible fraction, which results in lower
bioaccessibility values. In a highly dense (>108 viable cells/
mL) and complex community as the saliva or fecal micro-
biome, the “trapping” effect caused by the bacterial cells could
be significant. To corroborate this hypothesis, a batch test
incubating 100 μg/L of arsenate with saliva and fecal samples
was performed, and the percentage of arsenic retention by the
bacterial cells was found to be quite substantial, ranging from
35 to 54% (SI Method S7; data not shown). Sun et al., 2012
also observed a significant drop in arsenic bioaccessibility from
rice in a simulated colon digestion model. Authors suggested
that this drop is probably due to the higher amount of organic
matter that is introduced in the colon suspension under the
form of microbial biomass.53

Other factors related to food sample preparation, as the
cooking processes, may affect bioaccessibility of arsenic.
Laparra et al., 2004 that bioaccessible inorganic arsenic in
raw seaweed (54−67%) increased after cooking (78−84%).54
Other study reported comparable values of arsenic species in
raw and cooked seaweed.55 These both studies used boiling
water as the cooking method, which may cause a different
effect on the food matrix than the roasting process applied in
this research. Zhuang et al., 2006 observed that cooking
process of rice (30 min in water, 2:1 w/v ratio) reduced
bioaccessibility of arsenic.56

Table 2. Arsenic Species [Arsenic in μg; % (As μg of Each Species/Sum of Species)] in Initial and Gastrointestinal Digested
Nori Samples

food matrix
initial nori (45

μg As)

gastrointestinal digested nori

stage gastric small intestinal colonic

salivary bacteria without with without with without with

unit μg % μg % μg % μg % μg % μg % μg %

oxo-AsSug-glycerol 0.7 3 0.7 4 1.5 4 0.5 3 1.5 5 6.7 16 1.0 4
DMA 0.3 1 0.2 1 0.3 1 0.3 2 0.3 1 0.8 2 0.1 0.4
oxo-AsSug-phosphorylglycerol 6.5 30 11 61 28 70 7. 0 43 30 92 <0.1 <0.1
As(V) 0.1 1 0.2 1 1.5 4 0.2 1 0.4 1 <0.1 0.3 1
thioxo-AsSug-glycerol 0.4 2 0.3 2 0.4 1 0.2 1 0.2 1 34 81 23 94
thioxo-AsSug-phosphorylglycerol 14 62 5.6 31 7.9 20 7.7 48 <0.1 <0.1 <0.1
sum of species 22 100 18 100 40 100 16 100 33 100 41 100 25 100
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Moreover, Alava et al., 2013 showed that the particle size of
rice had a major influence on arsenic extraction from the food
matrix.57 In this research, the grinding process and the solid to
volume ratios might affect the arsenic solubility from the food
matrices.
Thus, the presence of salivary and colonic bacteria decreases

the bioaccessible arsenic (potentially available for intestinal
absorption) in rice and nori, possibly acting as a symbiotic/
mutualistic protective mechanism against internal arsenic
exposure.54−56,58 The disruption of the microbial ecosystems
by antibiotic intake or infections could change the behavior of
arsenic in the gastrointestinal tract, and such an outcome
would require further research.
Individual microbial signatures of salivary and stool samples

have previously been demonstrated59−61 but have not been
considered in this study because of the use of a single spot
sample of pooled saliva and feces from five donors. The effect
of the interindividual variability on arsenic bioaccessibility and
speciation may require further research. Moreover, sample
processing may affect the salivary and fecal microorganisms,
reducing the representativeness of the microbiomes. Regarding
the saliva, flow cytometry counts of viable cells before and after
the centrifugation steps gave similar results (∼108 viable cells/
mL). Fecal samples are routinely used to investigate the
intestinal microbiome and have been demonstrated to be a
useful proxy of distal colon microbiome,62 although prepara-

tion of the fecal inoculum can affect the viability of strictly
anaerobic microorganisms.

Biotransformation of Arsenic from Food during the
Gastrointestinal Passage. Arsenic speciation analyses were
performed on extracts of the initial samples and on the fluid
from each of the gastrointestinal digestive compartment by
HPLC-ICP-MS under both anionic and cationic chromato-
graphic conditions (SI Figure S3).

Mussels. The in vitro digestion did not transform the
arsenobetaine present in the original sample; the soluble
arsenobetaine initially constituted 60% of total arsenic, and the
values were 51−53% for all three gastrointestinal digested
fluids (gastric, small intestinal and colonic) for nonbacteria and
bacteria-conditioned treatments (Table 1). This result is
consistent with metabolic studies of arsenobetaine with
mice63 and humans,64 which showed that arsenobetaine is
excreted mostly unchanged in the urine after oral intake.
The original pattern of arsenosugars slightly changed in the

gastrointestinal digestive compartments with the oxo-form
generally becoming more dominant (Figure 2A). We did find
small amounts of thioxo arsenosugars in the small intestinal
and colonic stages, as well as in the initial mussels but not in
the gastric digestion stage (Table 1; SI Figures S3 and S4).
There was no clear change in the ratio between the glycerol
arsenosugar and the phosphorylated arsenosugar going from
initial mussel extract to the colon fluid.

Figure 2. Panel A and B: transformation of the arsenosugars in initial samples and gastrointestinal digested fluids of mussel and nori. The bar
graphs are color-coded to represent the two arsenosugars (blue and green) as their oxo (dark shading) and thioxo (light shading) forms. Panel C:
overview of the interrelationships between the four major arsenosugars found in this study.
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Few studies have assessed the toxicity and toxicokinetics of
arsenosugars. To our knowledge, the only study in vivo showed
that high doses (20−50 mg synthetic oxo-arsenosugar-
glycerol/kg body weight) induced blood and brain oxidative
stress, DNA damage and neurobehavioral impairments.65 Few
in vitro studies showed that oxo-arsenosugars were non-
cytotoxic or genotoxic to Caco-2 cells.66

Thioxo-AsSug-Glycerol was detected by Molin et al. 2012 in
human urine after blue mussel consumption, which accounted
for about 1.5% of the total excreted arsenic species.67 The
metabolism of arsenosugars from mussels might occur in the
gastrointestinal tract due to biotransformation by the human
tract microbiota. Previous research supports these findings, as
the anaerobic microbiota of mouse cecum material can
produce sulfur-containing analogs of arsenosugars.68,69 Because
of the in vitro intestinal permeability of thio-AsSugar-Gly was
found to be twice as high as its oxo- analog, the preabsorptive
metabolism in the digestive tract can change the toxicokinetics
and toxicodynamics of arsenic, but also affect the gastro-
intestinal barrier functionality.66

The minor arsenicals found in mussel (e.g., DMA, TETRA)
were also present at comparable levels in the digest fluids, a
result suggesting that these compounds, like arsenobetaine,
were not greatly affected by the gastrointestinal digestive
process or by the presence of salivary bacteria.
Nori Seaweed. By far, the major compounds in initial

samples were the thioxo (62% of total arsenic) and oxo (30%)
forms of the phosphorylated arsenosugar (Table 2; SI Figures
S3 and S6). This result is consistent with previous studies on
nori,70 but differs in two ways. First, the related (dephosphory-
lated) Oxo-AsSug-Glycerol was present in trace amounts only,
whereas it usually occurs at levels comparable to the
phosphorylated compound. For example, Li et al. 2003
found that the distribution of Oxo-AsSug-Phosphorylglycerol
and Oxo-AsSug-Glycerol (SI Figure S6) in five red alga
samples (Porphyra) obtained in Beijing varied from 13−68%
and 19−86%, respectively.31 Second, the thioxo, rather than
the oxo form of the arsenosugar was the dominant compound.
Although thioxo forms of arsenosugars are commonly reported
in algae,71 they are usually minor compounds compared to the
oxo analogs. We note that the nori used in our experiments
was briefly roasted before gastrointestinal digestion, and this
treatment may have influenced the observed speciation pattern.
Quite different from the outcome with mussels, in nori

samples we observed marked changes in the ratios of both the
oxo/thioxo forms and the glycerol/phosphoryl arsenosugars,
which also depended on the absence or presence of oral
bacteria (Table 2, Figure 2B). In the gastric fluids, the oxo
form predominated, a clear change from the initial nori, which
contained mainly the thioxo arsenosugar. In the colon, the

phosphorylated arsenosugars originally present in the nori were
completly degraded to the glycerol arsenosugar, which was
then mainly present as the thioxo form. This large change was
not evident after the gastric and small intestinal stages, and
thus had been elicited only at the colon stage. In the colon
environment, microbial sulfate reduction to hydrogen sulfide is
a common process which can trigger the formation of
thioarsenosugars.13,68 Conklin et al. 2006 reported that the
anaerobic microflora from mouse gastrointestinal tract can
readily convert an oxo-arsenosugar to its thioxo analogue.68 In
contrast, Chavez-Capilla et al. 2016 showed that oxo-
arsenosugars were not changed when seaweed was exposed
to physiologically based extraction.72

The presence or absence of salivary bacteria did not appear
to play a significant role in the observed transformations,
except for the small intestine fluid where the thioxo form was
present only in trace amounts in the bacteria-conditioned
treatments.
Sulfate reducing bacteria (SRB) can produce H2S, which is

necessary to induce arsenic thiolation.73 Heggendorn et al.,
2013 have detected SRB in human saliva samples and
identified Desulfovibrio fairf ieldensis, Desulfovibrio desulfuricans,
and Raoultella ornithinolytica as SRB inhabitants of the oral
cavity.74 It is feasible that the saliva samples used in this
research also contain SRB.
Because of the high oral bioavailability of arsenosugars and

the cellular toxicity of their metabolites,75,76 the possible risks
from ingesting arsenosugars cannot be fully excluded. Experi-
ments with the Caco-2 intestinal barrier model, which mimics
human intestinal absorption, indicated that the thioxo-
arsenosugars have higher bioavailability and toxicity as
compared to the oxo-arsenosugars.16,18 The observed differ-
ences between mussel and nori samples during the gastro-
intestinal digestive process suggest that the composition of the
food matrix might be a significant factor in the transformation
of arsenosugars. Previous research shows that diet has a
significant impact in shaping the gut microbiome, even after
short-term (24 h) of dietary alterations.77 The same research
showed that foodborne microbes can survive the transit
through the digestive system and be present in a metabolically
active form in the distal gut. This phenomenon described in
vivo, can occur in the in vitro system, affecting the microbial
communities in the colonic reactor and, in consequence, the
metabolic potency toward arsenic. Lu et al., 2014 observed that
the metabolic profile of arsenic in urine significantly differ in
dysbiotic mice induced by IL-10 knockout, compared to wild
type, supporting the relevance of gut microbiome impact on
arsenic biotransformations.78 Transformations between the
various forms of arsenosugars under simulated gut conditions

Table 3. Arsenic Species [Arsenic in μg; % (As μg of Each Species/Sum of Species)] in Initial and Gastrointestinal Digested
Rice Samples

food matrix
initial rice (6.0 μg

As)

gastrointestinal digested rice

stage gastric small intestinal colonic

salivary bacteria without with without with without with

unit μg % μg % μg % μg % μg % μg % μg %

As(III) 3.4 71 3.1 70 3.2 72 2.8 68 3.3 68 3.8 63 3.0 62
DMA 0.5 11 0.6 15 0.6 14 0.5 11 0.6 11 1.0 17 0.9 18
As(V) 0.9 18 0.7 15 0.7 15 0.9 21 1.0 21 1.2 20 1.0 20
sum of species 4.8 100 4.3 100 4.5 100 4.1 100 4.9 100 6.0 100 4.9 100
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could have direct implications for toxicity studies and risk
assessment.
In our in vitro system, both the digestion stage and the food

source influenced the transformation between the two major
arsenosugars and between their oxo- and thioxo forms (Figure
2C).
Rice. The rice in our study contained mainly iAs (ca. 70% of

extractable arsenic) and DMA (8%); about 20% was not
extractable and hence could not be assigned by our method
(Table 3; SI Figure S3). There were no clear differences
between the nonbacteria or bacteria-conditioned treatments
for any of the arsenic species. A study by Sun et al. 2012 found
similar results for iAs bioaccessibility in cooked white rice
where the soluble iAs stayed between 77% and 87% in the
stomach, intestine and colon treatments.79 Contrarily to this
study, Sun et al., 2012 found biotransformation of iAs from rice
to MMA(III) in a simulated colonic fermentation. Differences
in rice composition, microbial inoculum, composition of the
media used for the digestion can be some of the factors causing
discrepancies between studies.
The in vitro model applied in this research allows the

investigation of arsenic transformations occurring in specific
simulated gastrointestinal digestive processes, and when
combined with HPLC/mass spectrometry it can provide a
more complete profile of the bioaccessibility of the various
arsenic species found in food. Our results indicate that salivary
bacteria could increase the soluble arsenic species, especially in
the gastric digestion, and show that arsenosugars readily
interchange between their oxo and thioxo forms during the
different stages of the gastrointestinal simulation. This signals a
possible modification in the risk estimation of arsenic exposure
when considering salivary microorganisms in vitro. The system
is ideal to further investigate the effects of salivary treatment,
and the possible risk of arsenosugar-rich food consumption,
also considering the interindividual variability of the human
digestive microbiome.
Salivary Bacteria Increase the Papp and Cellular

Uptake of Arsenic from Digested Food Matrices in the
Small Intestine. Small intestinal digests of food matrices
displayed arsenic Papp values of 1 ± 0.1 × 10−4 cm s−1 while
control digests without a food matrix showed significantly (p <
0.001) lower arsenic Papp (1 ± 0.3 × 10−6 cm s−1). This was
independent of bacterial presence. Yet, within the small
intestinal digests of the three food matrices, bacterial presence
increased arsenic Papp by a factor 2 (2.6 ± 0.02 × 10−4 cm s−1,
p < 0.001), 1.5 (8.1 ± 0.3 × 10−5 cm s−1, p < 0.001), and 1.4
(5.9 ± 0.8 × 10−5 cm s−1) for rice, mussels, and nori,
respectively (Figure 3A). The highest Papp value was observed
for rice digests, both nonconditioned (1.3 ± 0.08 × 10−4 cm
s−1) and bacteria-conditioned (2.6 ± 0.02 × 10−4 cm s−1)
(Figure 3A).
The Papp values for digested rice, mussels and nori (5.3−

25.7 × 10−5 cm s−1) correspond to compounds that are
considered well-absorbable. Previous research compared the
Papp values in the Caco-2 model with in vivo absorption data
of several drugs in humans.80,81 Papp values <1 × 10−6 cm s−1,
between 1 and 10 × 10−6 cm s−1 and >10 × 10−6 cm s−1 have
been classified as poorly (0−20%), moderately (20−70%), and
well (70−100%) absorbed compounds, respectively.
Our Papp values, in the presence of food matrices, are higher

than previously reported values for aqueous standards of
inorganic and methylated arsenicals in the trivalent and
pentavalent state (0.3−10.6 × 10−6 cm s−1).20,22 Low Papp

values for aqueous standards of arsenobetaine (0.76 ± 0.02 ×
10−6 cm s−1) and arsenosugar metabolites have been described
(0.05−1.66 × 10−6 cm s−1).82,83

Standard of arsenobetaine had a low cell retention (3%) and
transport (1.7−3.4%) in in vitro models.82 Laparra et al. 2007
already showed a higher efficiency of arsenobetaine transport
(12%) when certified protein fish material (DORM-2) was
digested and tested in a Caco-2 in vitro model.84 In our study,
the cell uptake and transport of total arsenic from mussels was
38 ± 2%, which is a closer value to in vivo data.
Compared with previous in vitro studies of arsenic intestinal

absorption, we applied relevant concentrations for a food
exposure scenario (1.4−37.1 μg/L) and the food matrices were

Figure 3. Effect of salivary bacteria on the apparent permeability
coefficient and cellular retention of arsenic in the small intestine.
Figure 3A: Papp values of arsenic; Figure 3B: % of arsenic cellular
retention; Figure 3C: Transepithelial electrical resistance (bars, left
axis) and Papp values of Lucifer Yellow (dots, right axis), at the small
intestine model after exposure to nonconditioned (white bars) or
bacteria-conditioned (gray bars) digests of food matrices or digestive
fluids (control) (average ± standard deviation, n ≥ 4). Significant
differences comparing each food matrix in nonconditioned and
bacteria-conditioned treatment are marked by an asterisk (* p < 0.05;
** p < 0.01).
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digested in the presence of microorganisms, both key factors in
physiological intestinal absorption processes. The presence of a
complex mixture of food components and microbial
metabolites may stress the in vitro intestinal epithelium,
increasing the transport of arsenic to the basolateral (blood-
resembling) compartment. We only observed a significant
impairment of the epithelial barrier in the conditioned-bacteria
digest of rice, compared to the nonconditioned digests.. Thus,
the increased arsenic Papp, at least for mussels and nori, may
be linked to specific food components or bacterial metabolites
originated during the digestion.
Furthermore, our results are close to in vivo assessments of

oral arsenic bioavailability. Swine model studies indicated that
up to 94% of arsenic from rice was bioavailable.85 Human
intervention studies showed that between 44 and 60% of the
dietary dose of arsenic from rice intake is absorbed and quickly
eliminated in urine within 24 h of ingestion.86,87 Other human
studies demonstrated a high absorption of organic arsenic
aqueous standards (∼70−80%), synthetic arsenosugars (70−
88%), or organic arsenic species from food items (cod, salmon,
mussels, and seaweed) (56−99%) measured as a percentage of
total arsenic excreted in urine.88−92 The values reported for
mussels (41−86%)93 and nori seaweed samples (>90%, a
proxy from Le et al., 1999) in human studies fit with those
obtained in this research (70−100%).92
It is remarkable that, even though small intestinal

bioaccessibility of arsenic from mussels and rice was not
affected by salivary microorganisms, the Papp of arsenic was
further significantly increased by the salivary bacteria. Because
the salivary microorganisms made only minimal changes to the
speciation of arsenic, we assume that other factors in the
bacteria-host-arsenic interplay affect the higher arsenic trans-
port rates. For example, unknown bacterial metabolites or food
matrix composition, as phytic acid content in rice94 or
bioactive proteins, peptides, and amino acids derived from
mussels95 might explain the increase of arsenic transport.
In addition to the paracellular route, intestinal absorption of

arsenic can occur via the transcellular pathway.20,96 Averaged
out for all food sources, cellular retention of arsenic in the
small intestine model was in general higher (18 ± 8%), than in
the colon model (9 ± 6%).While cellular uptake from small
intestine digests ranged from 8 to 26%, the presence of bacteria
further increased the cellular uptake to 12−31%. (1.2−2.7
fold) (Figure 3B). In contrast, this increasing effect from
bacterial presence toward cellular arsenic uptake was not
observed in the absence of a food matrix, using the aqueous
standard of As(V) (10.8 ± 0.4% and 12.4 ± 1.2%,
respectively). The same trend was observed in the total uptake
(cellular uptake + transport to the basolateral compartment),
with a 2-fold increase for nori and rice (SI Table S6).
Specifically for rice, the total uptake (cell retention +

transport) reached 47 ± 3% and 93 ± 14% for the nonbacteria
conditioned and bacteria-conditioned digests, respectively (SI
Table S6). These values were significantly higher than those
previously reported for cooked rice (3.9−17.8%)97 or aqueous
standards of pentavalent arsenic species (≤0.5%) and As(III)
(≈1.4%)20,22 using in vitro models. Changes on tight junctions
or modifications of transporters of the cell membranes can be
the cause of these results. Glucose permeases, which are also
involved in inorganic arsenic uptake by intestinal cells96 are up
regulated by microbial metabolites as butyrate.98

Bacteria-Conditioned Digests of Rice Impaired the
Intestinal Epithelial Barrier Function without Affecting

Cellular Viability in the Small Intestine Model. During
the course of the assay (2 h, small intestine), the TEER values
were maintained above 80% of the initial TEER, except for the
conditioned-bacteria digest of rice, which caused a drop in
TEER values to 71 ± 4% (p = 0.02) (Figure 3C). Accordingly,
the Papp of LY was increased by conditioned-bacteria digests
from rice (9 ± 0.8 × 10−7 cm s−1), compared to nonbacteria
conditioned digests (4 ± 0.2 × 10−7 cm s−1). Independently of
the salivary bacteria, the presence of food matrices increased
the Papp of LY (6.8−8.4 × 10−7 cm s−1) compared to the
controls (4−4.7 × 10−7 cm s−1) (Figure 3C).
Previous research showed that none of the aqueous

standards of pentavalent arsenic species, including arsenosugar
metabolites, affected the barrier integrity in a Caco-2 model at
concentrations below 100 μg/L for 48−72 h.16,27 Moreover,
we found a moderate positive correlation between the cellular
uptake of arsenic and the Papp of LY in both small intestine (r
= 0.527, P = 0.008) and colon (r = 0.712, P < 0.001) models
(SI Figure S7). The reason for the drop in TEER and increased
Papp of LY for rice digests may be related to iAs toxicity, but
also to specific food constituents. For example, phytic acid is a
naturally occurring compound in brown rice,99 and it can
decrease the integrity of Caco-2 cell monolayers by modulating
the expression levels and localization of tight junction
proteins.94 The effect of the digests on the epithelial barrier
integrity may cause a weak intestinal epithelium and expose the
lamina propria to antigenic compounds, triggering an
inflammatory response, or increasing the absorption of certain
molecules. The paracellular route is involved in the absorption
of some arsenic species,20,22,100 thus an impairment of the tight
junctions could cause higher absorption of the toxicant. This
effect could be of relevance for iAs, which is the main specie in
the rice.
The concentrations of arsenic from rice in the cells (1.7−2

ng arsenic/mg prot) and the time of exposure (2 h) did not
decrease the resazurin reduction ability, a biological marker of
cell survival and mitochondrial activity101 (SI Figure S8). This
result indicates that the cells were not under toxic stress during
the assays. Moreover, the bacteria-conditioned digest of nori
and rice significantly increased the resorufin production (144
± 3% and 127 ± 9%, respectively, p < 0.01), compared to the
nonconditioned digests. Previous studies have supported the
crosstalk between microbiota and the host through bacterial
metabolites; for example, butyrate reduced the mitochondrial
production of reactive oxygen species and positively modulated
mitochondrial function.102,103

These findings reinforce the relevance of considering the
food matrix in arsenic risk assessment.104 We suggest that a
reevaluation of the standardized models for oral bioaccessi-
bility, bioavailability, and furthermore, risk assessment of
metal(oid)s or other xenobiotics from food matrices be carried
out taking into account the human microbiome as a relevant
factor in the process.

The Colonin Vitro Model Behaves Differently than
the Small Intestine Model When Exposed to Food
Matrices Containing Arsenic. Papp and Cellular Retention
of Arsenic. In the colon model, contents of arsenic in the
basolateral compartment were below the limit of quantifica-
tion. The absence of transport to the blood-resembling
compartment indicates that the biocompatible mucus layer
and/or the presence of mucus-producing cells could interfere
with the arsenic absorption, acting as a protective barrier
against arsenic uptake. Our research applied a complex food
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matrix combined with digestion fluids, and independent of the
matrix, the protective effect of the mucus against arsenic
absorption was evidenced; however, the entrapment of arsenic
by the mucus could affect the resident microbiota.47

While no arsenic transport was observed in the colon model,
the cellular uptake was 0.8−5 ng arsenic/mg protein. The
bacteria-conditioned digestion increased the cellular retention
of arsenic by 1.4 and 2.8 times for control (non-conditioned:
7.2 ± 0.2%; bacteria-conditioned: 10.2 ± 0.4%; p = 0.01) and
nori (non-conditioned 3.8 ± 0.4%; bacteria-conditioned 10.7
± 0.8%; p = 0.03), whereas the cells exposed to bacteria-
conditioned digests of mussel or rice had a 30−60% lower
arsenic uptake, compared to values nonconditioned digests
(Figure 4A).
Previous reports showed a link between bacterial metabolites

and protein expression levels (CYP3A4, Pgp, MRP2, PepT1,
MCT4) in intestinal cells. Butyrate increased the CYP3A4
protein levels by 40-fold and the MRP2 expression was
decreased by 10-fold in Caco-2 cells.105 The effect of different
food digests naturally containing arsenic in the expression of
transporters and enzymes in intestinal cells is still unknown.
It would be unexpected to find high levels of arsenic in the

colonic environment, as most of the toxicant is absorbed in the
small intestine, however, when arsenic is bound to a food
matrix, it could reach the colon. For example, arsenic in rice is
accumulated in the husk and bran,106 which are not digested in
the upper gastrointestinal tract. Nondigestible polysaccharides
can be fermented by gut bacteria causing the release of arsenic
to the colonic lumen. In a theoretical scenario of an adult with
a daily intake (0.3 kg/day) of brown rice (0.2 mg arsenic/kg),
assuming 50% bioaccessibility and 0.5 L of colonic volume, up
to 60 μg arsenic/L could be released in the colon. This
estimated value can be even higher if considering the arsenic
bound to soils.107 Due to the complexity of the food digest
matrix, there are several possible explanations for the observed
changes in cellular uptake such as increased arsenic release,
food constituents, the microorganisms or their metabolites, or
a combination of different factors.
Epithelial Barrier Integrity and Mitochondrial Activity.

The biocompatible mucus layer and the different cellular
composition of the small intestine and colon models did not
affect the epithelial barrier properties in basal conditions, as is
shown by the similar values of TEER after the differentiation
period (average n = 24, small intestine: 111 ± 12 Ω cm2;
colon: 114 ± 20 Ω cm2). The Papp of LY (average n = 24) was
lower in the colon model (3.5 ± 0.9 × 10−7 cm s−1) than in the
small intestine (6.7 ± 1.9 × 10−7 cm s−1) (p < 0.001) probably
due to the presence of the mucus layer on top of the epithelial
cells impeding the passage of the LY by the paracellular route.
During the course of the assay, the cells exposed to

conditioned-bacteria digest of rice decreased the TEER values
to 67 ± 7% (p = 0.03) (Figure 4B), while the other conditions
maintained the TEER above 80% of the initial values.
There have been no previous published studies using a

biosimilar mucus membrane to estimate arsenic intestinal
transport. We found a lack of correlation between the TEER
and LY transport (SI Figure S9), which may be caused by the
presence of a mucus layer. Glycosylated regions of mucins are
densely coated with negative charges,108 the same as LY in
solution and the electrostatic forces could impede the LY to
permeabilize through the simulated epithelium.109 Conse-
quently, the Papp of LY could not be an accurate marker for

assessing the epithelial barrier function when applying a mucus
layer on top of the cells.
The bacteria-conditioned digest of mussels, nori and rice

decreased the resorufin in the colon model (54−114%; 1.2−
1.6 times), compared to the nonconditioned digests (84−
131%) (Figure 4C). Reduction in resorufin levels may indicate
an impaired mitochondrial activity and therefore toxicity of the
colonic digests toward the colonic epithelium in vitro. Longer

Figure 4. Cellular retention, epithelial barrier function, and
mitochondrial activity of the colon in vitro model after exposure to
food digests. Percentage of cellular arsenic retention (4A), percentage
of transepithelial electrical resistance (TEER) values (bars, left axis)
and Papp of Lucifer Yellow (dots, right axis) (4B), and resazurin
reduction (4C) of the colon in vitro model after exposure (24 h) to
nonconditioned (white) or bacteria-conditioned (gray) digests. TEER
percentages were calculated compared to the initial TEER values at
the start of the assay. Significant differences (p < 0.05) comparing the
nonconditioned and bacteria-conditioned digestion are marked with
an asterisk (*). Only in the graph 4C significant differences (p < 0.05)
comparing nonconditioned and controls are marked by a pad symbol
(#). Values are expressed as mean ± standard deviation (n ≥ 3).
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exposure (24 h) and longer contact of food matrices with gut
microorganisms could cause the differences observed between
small intestine and colon models. Thus, not only concentration
but also time of exposure should be considered when using in
vitro tests to assess the toxic effects of arsenic to small intestine
and colon epithelium.
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