415 research outputs found

    A Simulation of High Latitude F-Layer Instabilities in the Presence of Magnetosphere-Ionosphere Coupling

    Get PDF
    A magnetic-field-line-integrated model of plasma interchange instabilities is developed for the high latitude ionosphere including magnetospheric coupling effects. We show that primary magnetosphere-ionosphere coupling effect is to incorporate the inertia of the magnetospheric plasma in the analysis. As a specific example, we present the first simulation of the E x B instability in the inertial regime, i.e., nu sub i omega where nu sub i is the ion-neutral collision frequency and omega is the wave frequency. We find that the inertial E x B instability develops in a fundamentally different manner than in the collisional case ni sub i omega. Our results show that striations produced in the inertial regime are spread and retarded by ion inertial effects, and result in more isotropic irregularities than those seen in the collisional case

    Evolution of particle composition in CLOUD nucleation experiments

    Get PDF
    Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Centre européen pour la recherche nucléaire). The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during their growth from sizes of a few nanometers to tens of nanometers was derived from measured hygroscopicity assuming the Zdanovskii–Stokes–Robinson relationship, and compared to values gained from the spectrometers. The ZSR-relationship was also applied to obtain the measured ethanol affinities during the particle growth, which were used to derive the volume fractions of sulphuric acid and the other inorganics (e.g. ammonium salts). In the presence of sulphuric acid and ammonia, particles with a mobility diameter of 150 nm were chemically neutralised to ammonium sulphate. In the presence of oxidation products of pinanediol, the organic volume fraction of freshly nucleated particles increased from 0.4 to ~0.9, with an increase in diameter from 2 to 63 nm. Conversely, the sulphuric acid volume fraction decreased from 0.6 to 0.1 when the particle diameter increased from 2 to 50 nm. The results provide information on the composition of nucleated aerosol particles during their growth in the presence of various combinations of sulphuric acid, ammonia, dimethylamine and organic oxidation products

    Leibnizian, Galilean and Newtonian structures of spacetime

    Get PDF
    The following three geometrical structures on a manifold are studied in detail: (1) Leibnizian: a non-vanishing 1-form Ω\Omega plus a Riemannian metric \h on its annhilator vector bundle. In particular, the possible dimensions of the automorphism group of a Leibnizian G-structure are characterized. (2) Galilean: Leibnizian structure endowed with an affine connection \nabla (gauge field) which parallelizes Ω\Omega and \h. Fixed any vector field of observers Z (Ω(Z)=1\Omega (Z) = 1), an explicit Koszul--type formula which reconstruct bijectively all the possible \nabla's from the gravitational G=ZZ{\cal G} = \nabla_Z Z and vorticity ω=rotZ/2\omega = rot Z/2 fields (plus eventually the torsion) is provided. (3) Newtonian: Galilean structure with \h flat and a field of observers Z which is inertial (its flow preserves the Leibnizian structure and ω=0\omega = 0). Classical concepts in Newtonian theory are revisited and discussed.Comment: Minor errata corrected, to appear in J. Math. Phys.; 22 pages including a table, Late

    Recommender Thermometer for Measuring the Preparedness for Flood Resilience Management

    Get PDF
    A range of various thermometers and similar scales are employed in different human and resilience management activities: Distress Thermometer, Panic Thermometer, Fear Thermometer, fire danger rating, hurricane scales, earthquake scales (Richter Magnitude Scale, Mercalli Scale), Anxiety Thermometer, Help Thermometer, Problem Thermometer, Emotion Thermometer, Depression Thermometer, the Torino scale (assessing asteroid/comet impact prediction), Excessive Heat Watch, etc. Extensive financing of the preparedness for flood resilience management with overheated full-scale resilience management might be compared to someone ill running a fever of 41°C. As the financial crisis hits and resilience management financing cools down it reminds a sick person whose body temperature is too low. The degree indicated by the Recommender Thermometer for Measuring the Preparedness for Flood Resilience Management with a scale between Tmin=34,0° and Tmax=42,0° shows either cool or overheated preparedness for flood resilience management. The formalized presentation of this research shows how changes in the micro, meso and macro environment of resilience management and the extent to which the goals pursued by various interested parties are met cause corresponding changes in the “temperature” of the preparedness for resilience management. Global innovative aspects of the Recommender Thermometer developed by the authors of this paper are, primarily, its capacity to measure the “temperature” of the preparedness for flood resilience management automatically, to compile multiple alternative recommendations (preparedness for floods, including preparing your home for floods, taking precautions against a threat of floods, retrofitting for flood-prone areas, checking your house insurance; preparedness for bushfires, preparedness for cyclones, preparedness for severe storms, preparedness for heat waves, etc.) customised for a specific user, to perform multiple criteria analysis of the recommendations, and to select the ten most rational ones for that user. Across the world, no other system offers these functions yet. The Recommender Thermometer was developed and fine-tuned in the course of the Android (Academic Network for Disaster Resilience to Optimise educational Development) project

    Relationships between energy cost, swimming velocity and speed fluctuation in elite butterfliers

    Get PDF
    In swimming science, economy of movement is an interesting field of research. Several investigations have been conducted to understand the role of bioenergetical profile to performance. Most of those studies focused exclusively on the contribution of The individual correlations between E-tot and v ranged from R=0.95 aerobic system to produce energy for movement, even though all competitive swimming events also require significant (p=0.05) to R=0.90 (p<0.01). For pooled data the relationship was contribution from anaerobic energetic system to cover total energy expenditure. R=0.70 (p<0.01). The individual correlations between EC and d

    Mode resolved density of atmospheric aerosol particles

    Get PDF
    In this study, we investigate the mode resolved density of ultrafine atmospheric particles measured in boreal forest environment. The method used here enables us to find the distinct density information for each mode in atmospheric fine particle population: the density values for nucleation, Aitken, and accumulation mode particles are presented. The experimental data was gained during 2 May 2005–19 May 2005 at the boreal forest measurement station "SMEAR II" in Hyytiälä, Southern Finland. The density values for accumulation mode varied from 1.1 to 2 g/cm<sup>3</sup> (average 1.5 g/cm<sup>3</sup>) and for Aitken mode from 0.4 to 2 g/cm<sup>3</sup> (average 0.97 g/cm<sup>3</sup>). As an overall trend during the two weeks campaign, the density value of Aitken mode was seen to gradually increase. With the present method, the time dependent behaviour of the particle density can be investigated in the time scale of 10 min. This allows us to follow the density evolution of the nucleation mode particles during the particle growth process following the nucleation burst. The density of nucleation mode particles decreased during the growth process. The density values for 15 nm particles were 1.2–1.5 g/cm<sup>3</sup> and for grown 30 nm particles 0.5–1 g/cm<sup>3</sup>. These values are consistent with the present knowledge that the condensing species are semi-volatile organics, emitted from the boreal forest

    Time limit at the minimum velocity of VO2max and intracyclic variation of the velocity of the centre of mass

    Get PDF
    The purpose of this study was to analyse the relationship between time limit at the minimum velocity that elicits maximal oxygen consumption (TLim-vVO2max) and intra-cyclic variations of the velocity of the centre of mass (dv) in the four competitive swimming techniques. Twelve elite male swimmers SWIMMING BIOENERGETICS Rev Port Cien Desp 190 6(Supl.2) 185–197 swam their own best technique until exhaustion at their previously determined v O2max to assess TLim-v O2max. The test was videotaped in the sagittal plan and the APAS software was used to evaluate the horizontal velocity of the centre of mass (Vcm) and its intra-cyclic variation (dv) per swimming technique. Results pointed out that the strokes that presented higher intra-cyclic variations also presented larger values of TLim. Intra-cyclic speed fluctuations (dv) decreased during the TLim test in the four strokes studied, probably due to fatigue. Key words: VO2, intra-cyclic velocity variations, time limit, centre of mass.Authors want to express their gratitude to the Portuguese National Team, and the Portuguese Swimming Federation, for their cooperation

    Interaction between parental psychosis and early motor development and the risk of schizophrenia in a general population birth cohort.

    Get PDF
    BACKGROUND: Delayed motor development in infancy and family history of psychosis are both associated with increased risk of schizophrenia, but their interaction is largely unstudied. AIM: To investigate the association of the age of achieving motor milestones and parental psychosis and their interaction in respect to risk of schizophrenia. METHODS: We used data from the general population-based prospective Northern Finland Birth Cohort 1966 (n=10,283). Developmental information of the cohort members was gathered during regular visits to Finnish child welfare clinics. Several registers were used to determine the diagnosis of schizophrenia among the cohort members and psychosis among the parents. Altogether 152 (1.5%) individuals had schizophrenia by the age of 46 years, with 23 (15.1%) of them having a parent with psychosis. Cox regression analysis was used in analyses. RESULTS: Parental psychosis was associated (P<0.05) with later achievement of holding the head up, grabbing an object, and walking without support. In the parental psychosis group, the risk for schizophrenia was increased if holding the head up (hazard ratio [HR]: 2.46; degrees of freedom [df]=1; 95% confidence interval [95% CI]: 1.07-5.66) and touching the thumb with the index finger (HR: 1.84; df=1; 95% CI: 1.11-3.06) was later. In the group without parental psychosis, a delay in the following milestones increased the risk of schizophrenia: standing without support and walking without support. Parental psychosis had an interaction with delayed touching thumb with index finger (HR: 1.87; df=1; 95% CI: 1.08-3.25) when risk of schizophrenia was investigated. CONCLUSIONS: Parental psychosis was associated with achieving motor milestones later in infancy, particularly the milestones that appear early in a child's life. Parental psychosis and touching the thumb with the index finger had a significant interaction on risk of schizophrenia. Genetic risk for psychosis may interact with delayed development to raise future risk of schizophrenia, or delayed development may be a marker of other risk processes that interact with genetic liability to cause later schizophrenia.This study was supported by grants from the Brain and Behavior Research Foundation, Northern Finland Health Care Support Foundation, Sigrid Jusélius Foundation, and the Signe and Ane Gyllenberg Foundation, Finland. NFBC 1966 received financial support from the Academy of Finland (104781, 120315, 129269, 1114194, 24300796, 268336, 278286), Center of Excellence in Complex Disease Genetics and SALVE, Oulu University Hospital, Oulu, Finland, Biocenter of Oulu, Finland, University of Oulu, Finland (75617, 24002054, 2400692), Ministry of Social Affairs and Health (50459, 50691, 50842, 2749, 2465), NHLBI grant 5R01HL087679-02 through the STAMPEED program (1RL1MH083268-01), NIH/NIMH (5R01MH63706:02), ENGAGE project and grant agreement HEALTH-F4-2007-(201413), EU FP7 EurHEALTHAgeing (277849), EU FP7 EurHealth Epi-Migrant (279143), European Regional Development Fund 537/2010 (24300936) and the Medical Research Council, UK (G0500539, G0600705, G1002319, PrevMetSyn/SALVE).This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.eurpsy.2015.04.00
    corecore