68 research outputs found

    Domain Organization, Catalysis and Regulation of Eukaryotic Cystathionine Beta-Synthases

    Get PDF
    Cystathionine beta-synthase (CBS) is a key regulator of sulfur amino acid metabolism diverting homocysteine, a toxic intermediate of the methionine cycle, via the transsulfuration pathway to the biosynthesis of cysteine. Although the pathway itself is well conserved among eukaryotes, properties of eukaryotic CBS enzymes vary greatly. Here we present a side-by-side biochemical and biophysical comparison of human (hCBS), fruit fly (dCBS) and yeast (yCBS) enzymes. Preparation and characterization of the full-length and truncated enzymes, lacking the regulatory domains, suggested that eukaryotic CBS exists in one of at least two significantly different conformations impacting the enzyme’s catalytic activity, oligomeric status and regulation. Truncation of hCBS and yCBS, but not dCBS, resulted in enzyme activation and formation of dimers compared to native tetramers. The dCBS and yCBS are not regulated by the allosteric activator of hCBS, S-adenosylmethionine (AdoMet); however, they have significantly higher specific activities in the canonical as well as alternative reactions compared to hCBS. Unlike yCBS, the heme-containing dCBS and hCBS showed increased thermal stability and retention of the enzyme’s catalytic activity. The mass-spectrometry analysis and isothermal titration calorimetry showed clear presence and binding of AdoMet to yCBS and hCBS, but not dCBS. However, the role of AdoMet binding to yCBS remains unclear, unlike its role in hCBS. This study provides valuable information for understanding the complexity of the domain organization, catalytic specificity and regulation among eukaryotic CBS enzymes.This work was supported by Postdoctoral Fellowship 0920079G from the American Heart Association (to TM), by National Institutes of Health Grant HL065217, by American Heart Association Grant In-Aid 09GRNT2110159, by a grant from the Jerome Lejeune Foundation (all to JPK) and by a research contract RYC2009-04147 (to ALP). In addition, grant support (P11-CTS-07187, CSD2009-00088 and BIO2012-34937) to Dr. Jose M. Sanchez-Ruiz (University of Granada) and SGIker technical and human support (UPV/EHU, MICINN, GV/EJ, ESF) are gratefully acknowledged

    Developing Global Maps of the Dominant Anopheles Vectors of Human Malaria

    Get PDF
    Simon Hay and colleagues describe how the Malaria Atlas Project has collated anopheline occurrence data to map the geographic distributions of the dominant mosquito vectors of human malaria

    Realising the full potential of citizen science monitoring programs

    Get PDF
    Citizen science is on the rise. Aided by the internet, the popularity and scope of citizen science appears almost limitless. For citizens the motivation is to contribute to "real" science, public information and conservation. For scientists, citizen science offers a way to collect information that would otherwise not be affordable. The longest running and largest of these citizen science programs are broad-scale bird monitoring projects. There are two basic types of protocols possible: (a) cross-sectional schemes such as Atlases - collections of surveys of many species contributed by volunteers over a set period of time, and (b) longitudinal schemes such as Breeding Bird Surveys (BBS) - on-going stratified monitoring of sites that require more coordination. We review recent applications of these citizen science programs to determine their influence in the scientific literature. We use return-on-investment thinking to identify the minimum investment needed for different citizen science programs, and the point at which investing more in citizen science programs has diminishing benefits. Atlas and BBS datasets are used to achieve different objectives, with more knowledge-focused applications for Atlases compared with more management applications for BBS. Estimates of volunteer investment in these datasets show that compared to cross-sectional schemes, longitudinal schemes are more cost-effective, with increased BBS investment correlated with more applications, which have higher impact in the scientific literature, as measured by citation rates. This is most likely because BBS focus on measuring change, allowing the impact of management and policy to be quantified. To ensure both types of data are used to their full potential we recommend the following: elements of BBS protocols (fixed sites, long-term monitoring) are incorporated into Atlases; regional coordinators are in place to maintain data quality; communication between researchers and the organisations coordinating volunteer monitoring is enhanced, with monitoring targeted to meet specific needs and objectives; application of data to under-explored objectives is encouraged, and data are made freely and easily accessible. (C) 2013 Elsevier Ltd. All rights reserved

    Pheromones and Other Semiochemicals for Monitoring Rare and Endangered Species

    Get PDF
    As global biodiversity declines, biodiversity and conservation have become ever more important research topics. Research in chemical ecology for conservation purposes has not adapted to address this need. During the last 10-15 years, only a few insect pheromones have been developed for biodiversity and conservation studies, including the identification and application of pheromones specifically for population monitoring. These investigations, supplemented with our knowledge from decades of studying pest insects, demonstrate that monitoring with pheromones and other semiochemicals can be applied widely for conservation of rare and threatened insects. Here, I summarize ongoing conservation research, and outline potential applications of chemical ecology and pheromone-based monitoring to studies of insect biodiversity and conservation research. Such applications include monitoring of insect population dynamics and distribution changes, including delineation of current ranges, the tracking of range expansions and contractions, and determination of their underlying causes. Sensitive and selective monitoring systems can further elucidate the importance of insect dispersal and landscape movements for conservation. Pheromone-based monitoring of indicator species will also be useful in identifying biodiversity hotspots, and in characterizing general changes in biodiversity in response to landscape, climatic, or other environmental changes

    Pheromones and Other Semiochemicals for Monitoring Rare and Endangered Species

    Get PDF

    The effect of split thickness skin grafts on bone growth

    No full text

    Geographical differences in habitat relationships of cetaceans across an ocean basin

    No full text
    Place: Hoboken Publisher: Wiley WOS:000531110000001International audienceThe distributions of highly mobile marine species such as cetaceans are increasingly modeled at basin scale by combining data from multiple regions. However, these basin-wide models often overlook geographical variations in species habitat relationships between regions. We tested for geographical variations in habitat relationships for a suite of cetacean taxa between the two sides of the North Atlantic basin. Using cetacean visual survey data and remote sensing data from the western and eastern basin in summer, we related the probability of presence of twelve cetacean taxa from three guilds to seafloor depth, sea surface temperature and primary productivity. In a generalized additive model framework, we fitted 1) basin-wide (BW) models, assuming a single global relationship, 2) region-specific intercepts (RI) models, assuming relationships with the same shape in both regions, but allowing a region-specific intercept and 3) region-specific shape (RS) models, assuming relationships with different shapes between regions. RS models mostly yielded significantly better fits than BW models, indicating cetacean occurrences were better modeled with region-specific than with global relationships. The better fits of RS models over RI models further provided statistical evidence for differences in the shapes of region-specific relationships. Baleen whales showed striking differences in both the shapes of relationships and their mean presence probabilities between regions. Deep diving whales and delphinoids showed contrasting relationships between regions with few exceptions (e.g. non-statistically different shapes of region-specific relationships for harbor porpoise and beaked whales with depth). Our findings stress the need to account for geographical differences in habitat relationships between regions when modeling species distributions from combined data at the basin scale. Our proposed hypotheses offer a roadmap for understanding why habitat relationships may geographically vary in cetaceans and other highly mobile marine species
    • …
    corecore