31 research outputs found

    Effects of daytime food intake on memory consolidation during sleep or sleep deprivation.

    Get PDF
    Sleep enhances memory consolidation. Bearing in mind that food intake produces many metabolic signals that can influence memory processing in humans (e.g., insulin), the present study addressed the question as to whether the enhancing effect of sleep on memory consolidation is affected by the amount of energy consumed during the preceding daytime. Compared to sleep, nocturnal wakefulness has been shown to impair memory consolidation in humans. Thus, a second question was to examine whether the impaired memory consolidation associated with sleep deprivation (SD) could be compensated by increased daytime energy consumption. To these aims, 14 healthy normal-weight men learned a finger tapping sequence (procedural memory) and a list of semantically associated word pairs (declarative memory). After the learning period, standardized meals were administered, equaling either ∼50% or ∼150% of the estimated daily energy expenditure. In the morning, after sleep or wakefulness, memory consolidation was tested. Plasma glucose was measured both before learning and retrieval. Polysomnographic sleep recordings were performed by electroencephalography (EEG). Independent of energy intake, subjects recalled significantly more word pairs after sleep than they did after SD. When subjects stayed awake and received an energy oversupply, the number of correctly recalled finger sequences was equal to those seen after sleep. Plasma glucose did not differ among conditions, and sleep time in the sleep conditions was not influenced by the energy intake interventions. These data indicate that the daytime energy intake level affects neither sleep's capacity to boost the consolidation of declarative and procedural memories, nor sleep's quality. However, high energy intake was followed by an improved procedural but not declarative memory consolidation under conditions of SD. This suggests that the formation of procedural memory is not only triggered by sleep but is also sensitive to the fluctuations in the energy state of the body

    Short Hypoxia Does not Affect Plasma Leptin in Healthy Men under Euglycemic Clamp Conditions

    Get PDF
    Leptin is involved in the endocrine control of energy expenditure and body weight regulation. Previous studies emphasize a relationship between hypoxic states and leptin concentrations. The aim of this study was to investigate the effects of acute hypoxia on leptin concentrations in healthy subjects. We examined 14 healthy men. Hypoxic conditions were induced by decreasing oxygen saturation to 75% for 30 minutes. Plasma leptin concentrations were determined at baseline, after 3 hours of euglycemic clamping, during hypoxia, and repeatedly the following 2.5 hours thereafter. Our results show an increase of plasma leptin concentrations in the course of 6 hours of hyperinsulinemic-euglycemic clamping which may reflect diurnal rhythmicity. Notwithstanding, there was no difference between levels of leptin in the hypoxic and the normoxic condition (P = .2). Since we did not find any significant changes in leptin responses upon hypoxia, plasma leptin levels do not seem to be affected by short hypoxic episodes of moderate degree

    Reply to Witthöft et al. Comment on “Wardzinski et al. Mobile Phone Radiation Deflects Brain Energy Homeostasis and Prompts Human Food Ingestion. Nutrients 2022, 14, 339”

    Get PDF
    We are somewhat surprised about the extent of the feedback that we received upon our publication [1], in terms of the not entirely new connection between mobile phone radiation, brain activity, and food intake, being previously explored by EEG, association studies, and animal experiments (as outlined in the introduction of our paper). Ten years ago, scientists found “alarming” evidence of a long-term association between mobile phone radiation and obesity in humans [2]. Specifically, we are perplexed by the partly emotional character of the discussion among our readers. However, back to the facts: We thank our scientific colleagues for their detailed analyses and considerations [3] regarding our study and are pleased to explain the open points for more clarity

    Evidence for a Relationship between VEGF and BMI Independent of Insulin Sensitivity by Glucose Clamp Procedure in a Homogenous Group Healthy Young Men

    Get PDF
    BACKGROUND: This is the first study to experimentally explore the direct relationship between circulating VEGF levels and body mass index (BMI) as well as to unravel the role of insulin sensitivity in this context under standardized glucose clamp conditions as the methodical gold-standard. In order to control for known influencing factors such as gender, medication, and arterial hypertension, we examined a highly homogeneous group of young male subjects. Moreover, to encompass also subjects beyond the normal BMI range, low weight and obese participants were additionally included and stress hormones as a main regulator of VEGF were assessed. METHODOLOGY/PRINCIPAL FINDINGS: Under euglycemic clamp conditions, VEGF was measured in 15 normal weight (BMI 20-25 kg/m(2)), 15 low weight (BMI<20 kg/m(2)), and 15 obese (BMI>30 kg/m(2)) male subjects aged 18-30 years and the insulin sensitivity index (ISI) was calculated. Since stress axis activation promotes VEGF secretion, concentrations of ACTH, cortisol, and catecholamines were monitored. Despite of comparable ACTH (P = 0.145), cortisol (P = 0.840), and norepinephrine (P = 0.065) levels, VEGF concentrations differed significantly between BMI-groups (P = 0.008) with higher concentrations in obese subjects as compared to normal weight (P = 0.061) and low weight subjects (P = 0.002). Pearson's correlation analysis revealed a positive relationship between BMI and VEGF levels (r = 0.407; P = 0.010) but no correlation of VEGF with ISI (r = 0.224; P = 0.175). CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a positive correlation between concentrations of circulating VEGF levels and BMI in healthy male subjects under highly controlled conditions. This relationship which is apparently disconnected from insulin sensitivity may be part of some pathogenetic mechanisms underlying obesity and type 2 diabetes

    Defective Awakening Response to Nocturnal Hypoglycemia in Patients with Type 1 Diabetes Mellitus

    Get PDF
    BACKGROUND: Nocturnal hypoglycemia frequently occurs in patients with type 1 diabetes mellitus (T1DM). It can be fatal and is believed to promote the development of the hypoglycemia-unawareness syndrome. Whether hypoglycemia normally provokes awakening from sleep in individuals who do not have diabetes, and whether this awakening response is impaired in T1DM patients, is unknown. METHODS AND FINDINGS: We tested two groups of 16 T1DM patients and 16 healthy control participants, respectively, with comparable distributions of gender, age, and body mass index. In one night, a linear fall in plasma glucose to nadir levels of 2.2 mmol/l was induced by infusing insulin over a 1-h period starting as soon as polysomnographic recordings indicated that stage 2 sleep had been reached. In another night (control), euglycemia was maintained. Only one of the 16 T1DM patients, as compared to ten healthy control participants, awakened upon hypoglycemia (p = 0.001). In the control nights, none of the study participants in either of the two groups awakened during the corresponding time. Awakening during hypoglycemia was associated with increased hormonal counterregulation. In all the study participants (from both groups) who woke up, and in five of the study participants who did not awaken (three T1DM patients and two healthy control participants), plasma epinephrine concentration increased with hypoglycemia by at least 100% (p < 0.001). A temporal pattern was revealed such that increases in epinephrine in all participants who awakened started always before polysomnographic signs of wakefulness (mean ± standard error of the mean: 7.5 ± 1.6 min). CONCLUSIONS: A fall in plasma glucose to 2.2 mmol/l provokes an awakening response in most healthy control participants, but this response is impaired in T1DM patients. The counterregulatory increase in plasma epinephrine that we observed to precede awakening suggests that awakening forms part of a central nervous system response launched in parallel with hormonal counterregulation. Failure to awaken increases the risk for T1DM patients to suffer prolonged and potentially fatal hypoglycemia

    Linking neuronal brain activity to the glucose metabolism

    No full text

    Pituitary-gonadal and pituitary-thyroid axis hormone concentrations before and during a hypoglycemic clamp after sleep deprivation in healthy men.

    Get PDF
    Total sleep deprivation (TSD) exerts strong modulatory effects on the secretory activity of endocrine systems that might be related to TSD-induced challenges of cerebral glucose metabolism. Here, we investigate whether TSD affects the course of male pituitary-gonadal and pituitary-thyroid axis related hormones during a subsequent 240-min hypoglycemic clamp. Ten healthy men were tested on 2 different conditions, TSD and 7-hour regular sleep. Circulating concentrations of total testosterone, prolactin (PRL), thyroid stimulating hormone (TSH), free triiodothyronine (fT3), and free thyroxin (fT4) were measured during baseline and a subsequent hypoglycemic clamp taking place in the morning. Basal, i.e. at 07:00 am measured, concentrations of total testosterone (P = 0.05) and PRL (P<0.01) were lower while the values of TSH (P = 0.02), fT3 (P = 0.08), and fT4 (P = 0.04) were higher after TSD as compared to regular sleep. During the subsequent hypoglycemic clamp (all measurements from baseline to the end of the clamp analyzed) total testosterone concentrations in the regular sleep (P<0.01) but not in the TSD condition (P = 0.61) decreased, while PRL levels increased (P = 0.05) irrespectively of the experimental condition (P = 0.31). TSH concentrations decreased during hypoglycemia (P<0.01), with this decrease being more pronounced after TSD (P = 0.04). However, at the end of the hypoglycemic clamp concentrations all of the above mentioned hormones did not differ between the two sleep conditions. Our data indicate a profound influence of TSD on male pituitary-gonadal and pituitary-thyroid axis hormones characterized by reduced basal testosterone and PRL levels and increased TSH levels. However, since concentrations of these hormones measured at the end of the 240-min hypoglycemic clamp were not affected by TSD it can be speculated that the influence of TSD on the two endocrine axes is rather short lived or does not interact in an additive manner with their responses to hypoglycemia
    corecore