57 research outputs found

    Mating success and body condition not related to foraging specializations in male fur seals

    Full text link
    Individual specialization is widespread among wild populations. While its fitness consequences are central in predicting the ecological and evolutionary trajectories of populations, they remain poorly understood. Long-term individual foraging specializations occur in male Antarctic (Arctocephalus gazella) and Australian (A. pusillus doriferus) fur seals. Strong selective pressure is expected in these highly dimorphic and polygynous species, raising the question of the fitness payoffs associated with different foraging strategies. We investigated the relationship between individual isotopic niche (a proxy of foraging specialization), body size and condition, and an index of reproductive success (harem size) in territorial males. Individuals varied greatly in their skin and fur isotopic values reflecting a range of foraging strategies within the two populations. However, in both species, isotopic niche was not correlated to body size, condition or mating success (R (2)/ρ < 0.06). Furthermore, no foraging niche was predominant in either species, which would have indicated a substantial long-term fitness benefit of a particular strategy via a higher survival rate. These results suggest that the fitness consequences of a foraging strategy depend not only on the quality of prey and feeding habitat but also on an individual\u27s hunting efficiency and skills

    Sexual niche segregation and gender-specific individual specialisation in a highly dimorphic marine mammal

    Full text link
    While sexual segregation is expected in highly dimorphic species, the local environment is a major factor driving the degree of resource partitioning within a population. Sexual and individual niche segregation was investigated in the Australian fur seal (Arctocephalus pusillus doriferus), which is a benthic foraging species restricted to the shallow continental shelf region of south-eastern Australia. Tracking data and the isotopic values of plasma, red blood cells and whiskers were combined to document spatial and dietary niche segregation throughout the year. Tracking data indicated that, in winter, males and females overlapped in their foraging habitat. All individuals stayed within central Bass Strait, relatively close (< 220 km) to the breeding colony. Accordingly, both genders exhibited similar plasma and red cell δ13C values. However, males exhibited greater δ13C intra-individual variation along the length of their whisker than females. This suggests that males exploited a greater diversity of foraging habitats throughout the year than their female counterparts, which are restricted in their foraging grounds by the need to regularly return to the breeding colony to suckle their pup. The degree of dietary sexual segregation was also surprisingly low, both sexes exhibiting a great overlap in their δ15N values. Yet, males displayed higher δ15N values than females, suggesting they fed upon a higher proportion of higher trophic level prey. Given that males and females exploit different resources (mainly foraging habitats), the degree of individual specialisation might differ between the sexes. Higher degrees of individual specialisation would be expected in males which exploit a greater range of resources. However, comparable levels of inter-individual variation in δ15N whisker values were found in the sampled males and females, and, surprisingly, all males exhibited similar seasonal and inter-annual variation in their δ13C whisker values, suggesting they all followed the same general dispersion pattern throughout the year

    Early-life sexual segregation: ontogeny of isotopic niche differentiation in the Antarctic fur seal

    Full text link
    Investigating the ontogeny of niche differentiation enables to determine at which life-stages sexual segregation arises, providing insights into the main factors driving resource partitioning. We investigated the ontogeny of foraging ecology in Antarctic fur seals (Arctocephalus gazella), a highly dimorphic species with contrasting breeding strategies between sexes. Sequential δ(13)C and δ(15)N values of whiskers provided a longitudinal proxy of the foraging niche throughout the whole life of seals, from weaning, when size dimorphism is minimal to the age of 5. Females exhibited an early-life ontogenetic shift, from a total segregation during their first year at-sea, to a similar isotopic niche as breeding females as early as age 2. In contrast, males showed a progressive change in isotopic niche throughout their development such that 5-year-old males did not share the same niche as territorial bulls. Interestingly, males and females segregated straight after weaning with males appearing to feed in more southerly habitats than females. This spatial segregation was of similar amplitude as observed in breeding adults and was maintained throughout development. Such early-life niche differentiation is an unusual pattern and indicates size dimorphism and breeding constraints do not directly drive sexual segregation contrary to what has been assumed in otariid seals

    Long-term species, sexual and individual variations in foraging strategies of fur seals revealed by stable isotopes in whiskers

    Get PDF
    Background: Individual variations in the use of the species niche are an important component of diversity in trophic interactions. A challenge in testing consistency of individual foraging strategy is the repeated collection of information on the same individuals. Methodology/Principal Findings: The foraging strategies of sympatric fur seals (Arctocephalus gazella and A. tropicalis) were examined using the stable isotope signature of serially sampled whiskers. Most whiskers exhibited synchronous delta C-13 and delta N-15 oscillations that correspond to the seal annual movements over the long term (up to 8 years). delta C-13 and delta N-15 values were spread over large ranges, with differences between species, sexes and individuals. The main segregating mechanism operates at the spatial scale. Most seals favored foraging in subantarctic waters (where the Crozet Islands are located) where they fed on myctophids. However, A. gazella dispersed in the Antarctic Zone and A. tropicalis more in the subtropics. Gender differences in annual time budget shape the seal movements. Males that do not perform any parental care exhibited large isotopic oscillations reflecting broad annual migrations, while isotopic values of females confined to a limited foraging range during lactation exhibited smaller changes. Limited inter-individual isotopic variations occurred in female seals and in male A. tropicalis. In contrast, male A. gazella showed large inter-individual variations, with some males migrating repeatedly to high-Antarctic waters where they fed on krill, thus meaning that individual specialization occurred over years. Conclusions/Significance: Whisker isotopic signature yields unique long-term information on individual behaviour that integrates the spatial, trophic and temporal dimensions of the ecological niche. The method allows depicting the entire realized niche of the species, including some of its less well-known components such as age-, sex-, individual- and migration-related changes. It highlights intrapopulation heterogeneity in foraging strategies that could have important implications for likely demographic responses to environmental variability

    What can whiskers tell us about mammalian evolution, behaviour, and ecology?

    Get PDF
    Most mammals have whiskers; however, nearly everything we know about whiskers derives from just a handful of species, including laboratory rats Rattus norvegicus and mice Mus musculus, as well as some species of pinniped and marsupial. We explore the extent to which the knowledge of the whisker system from a handful of species applies to mammals generally. This will help us understand whisker evolution and function, in order to gain more insights into mammalian behaviour and ecology. This review is structured around Tinbergen’s four questions, since this method is an established, comprehensive, and logical approach to studying behaviour. We ask: how do whiskers work, develop, and evolve? And what are they for? While whiskers are all slender, curved, tapered, keratinised hairs that transmit vibrotactile information, we show that there are marked differences between species with respect to whisker arrangement, numbers, length, musculature, development, and growth cycles. The conservation of form and a common muscle architecture in mammals suggests that early mammals had whiskers. Whiskers may have been functional even in therapsids. However, certain extant mammalian species are equipped with especially long and sensitive whiskers, in particular nocturnal, arboreal species, and aquatic species, which live in complex environments and hunt moving prey. Knowledge of whiskers and whisker use can guide us in developing conservation protocols and designing enriched enclosures for captive mammals. We suggest that further comparative studies, embracing a wider variety of mammalian species, are required before one can make large-scale predictions relating to evolution and function of whiskers. More research is needed to develop robust techniques to enhance the welfare and conservation of mammals

    Data from: Mating success and body condition not related to foraging specializations in male fur seals

    No full text
    Individual specialization is widespread among wild populations. While its fitness consequences are central in predicting the ecological and evolutionary trajectories of populations, they remain poorly understood. Long-term individual foraging specializations occur in male Antarctic (Arctocephalus gazella) and Australian (A. pusillus doriferus) fur seals. Strong selective pressure is expected in these highly dimorphic and polygynous species, raising the question of the fitness payoffs associated with different foraging strategies. We investigated the relationship between individual isotopic niche (a proxy of foraging specialization), body size and condition, and an index of reproductive success (harem size) in territorial males. Individuals varied greatly in their skin and fur isotopic values reflecting a range of foraging strategies within the two populations. However, in both species, isotopic niche was not correlated to body size, condition or mating success (R2/ρ < 0.06). Furthermore, no foraging niche was predominant in either species, which would have indicated a substantial long-term fitness benefit of a particular strategy via a higher survival rate. These results suggest that the fitness consequences of a foraging strategy depend not only on the quality of prey and feeding habitat but also on an individual's hunting efficiency and skills

    Determinants of individual foraging specialization in large marine vertebrates, the Antarctic and subantarctic fur seals

    Full text link
    The degree of individual specialization in resource use differs widely among wild populations where individuals range from fully generalized to highly specialized. This interindividual variation has profound implications in many ecological and evolutionary processes. A recent review proposed four main ecological causes of individual specialization: interspecific and intraspecific competition, ecological opportunity and predation. Using the isotopic signature of subsampled whiskers, we investigated to what degree three of these factors (interspecific and intraspecific competition and ecological opportunity) affect the population niche width and the level of individual foraging specialization in two fur seal species, the Antarctic and subantarctic fur seals (Arctocephalus gazella and Arctocephalus tropicalis), over several years. Population niche width was greater when the two seal species bred in allopatry (low interspecific competition) than in sympatry or when seals bred in high-density stabilized colonies (high intraspecific competition). In agreement with the niche variation hypothesis (NVH), higher population niche width was associated with higher interindividual niche variation. However, in contrast to the NVH, all Antarctic females increased their niche width during the interbreeding period when they had potential access to a wider diversity of foraging grounds and associated prey (high ecological opportunities), suggesting they all dispersed to a similar productive area. The degree of individual specialization varied among populations and within the annual cycle. Highest levels of interindividual variation were found in a context of lower interspecific or higher intraspecific competition. Contrasted results were found concerning the effect of ecological opportunity. Depending on seal species, females exhibited either a greater or lower degree of individual specialization during the interbreeding period, reflecting species-specific biological constraints during that period. These results suggest a significant impact of ecological interactions on the population niche width and degree of individual specialization. Such variation at the individual level may be an important factor in the species plasticity with significant consequences on how it may respond to environmental variability

    Data from: Determinants of individual foraging specialisation in large marine vertebrates, the Antarctic and Subantarctic fur seals

    No full text
    1. The degree of individual specialization in resource use differs widely among wild populations where individuals range from fully generalized to highly specialized. This interindividual variation has profound implications in many ecological and evolutionary processes. A recent review proposed four main ecological causes of individual specialization: interspecific and intraspecific competition, ecological opportunity and predation. 2. Using the isotopic signature of subsampled whiskers, we investigated to what degree three of these factors (interspecific and intraspecific competition and ecological opportunity) affect the population niche width and the level of individual foraging specialization in two fur seal species, the Antarctic and subantarctic fur seals (Arctocephalus gazella and Arctocephalus tropicalis), over several years. 3. Population niche width was greater when the two seal species bred in allopatry (low interspecific competition) than in sympatry or when seals bred in high-density stabilized colonies (high intraspecific competition). In agreement with the niche variation hypothesis (NVH), higher population niche width was associated with higher interindividual niche variation. However, in contrast to the NVH, all Antarctic females increased their niche width during the interbreeding period when they had potential access to a wider diversity of foraging grounds and associated prey (high ecological opportunities), suggesting they all dispersed to a similar productive area. 4. The degree of individual specialization varied among populations and within the annual cycle. Highest levels of interindividual variation were found in a context of lower interspecific or higher intraspecific competition. Contrasted results were found concerning the effect of ecological opportunity. Depending on seal species, females exhibited either a greater or lower degree of individual specialization during the interbreeding period, reflecting species-specific biological constraints during that period. 5. These results suggest a significant impact of ecological interactions on the population niche width and degree of individual specialization. Such variation at the individual level may be an important factor in the species plasticity with significant consequences on how it may respond to environmental variability

    Whisker isotopic signature depicts migration patterns and multi-year intra- and inter-individual foraging strategies in fur seals

    No full text
    The movement and dietary history of individuals can be studied using stable isotope records in archival keratinous tissues. Here, we present a chronology of temporally fine-scale data on the trophic niche of otariid seals by measuring the isotopic signature of serially sampled whiskers. Whiskers of male Antarctic fur seals breeding at the Crozet Islands showed synchronous and regular oscillations in both their ή13C and ή15N values that are likely to represent their annual migrations over the long term (mean 4.8 years). At the population level, male Antarctic fur seals showed substantial variation in both ή13C and ή15N values, occupying nearly all the ‘isotopic space’ created by the diversity of potential oceanic habitats (from high Antarctica to the subtropics) and prey (from Antarctic krill to subantarctic and subtropical mesopelagic fishes). At the individual level, whisker isotopic signatures depict a large diversity of foraging strategies. Some seals remained in either subantarctic or Antarctic waters, while the migratory cycle of most animals encompassed a wide latitudinal gradient where they fed on different prey. The isotopic signature of whiskers, therefore, revealed new multi-year foraging strategies of male Antarctic fur seals and is a powerful tool for investigating the ecological niche during cryptic stages of mammals' life

    Kernaleguen_et_al_JAE_data

    No full text
    Carbon and nitrogen isotopic values of whiskers of Antarctic and subantarctic fur seal females during the pup-rearing and inter-breeding periods
    • 

    corecore