279 research outputs found

    Highly-Ionized High-Velocity Gas in the Vicinity of the Galaxy

    Get PDF
    We report the results of an extensive FUSE study of high velocity OVI absorption along 102 complete sight lines through the Galactic halo. The high velocity OVI traces a variety of phenomena, including tidal interactions with the Magellanic Clouds, accretion of gas, outflow from the Galactic disk, warm/hot gas interactions in a highly extended Galactic corona, and intergalactic gas in the Local Group. We identify 85 high velocity OVI features at velocities of -500 < v(LSR) < +500 km/s along 59 of the 102 sight lines. Approximately 60% of the sky (and perhaps as much as 85%) is covered by high velocity H+ associated with the high velocity OVI. Some of the OVI is associated with known high velocity HI structures (e.g., the Magellanic Stream, Complexes A and C), while some OVI features have no counterpart in HI 21cm emission. The smaller dispersion in the OVI velocities in the GSR and LGSR reference frames compared to the LSR is necessary (but not conclusive) evidence that some of the clouds are extragalactic. Most of the OVI cannot be produced by photoionization, even if the gas is irradiated by extragalactic background radiation. Collisions in hot gas are the primary OVI ionization mechanism. We favor production of some of the OVI at the boundaries between warm clouds and a highly extended [R > 70 kpc], hot [T > 10^6 K], low-density [n < 10^-4 cm^-3] Galactic corona or Local Group medium. A hot Galactic corona or Local Group medium and the prevalence of high velocity OVI are consistent with predictions of galaxy formation scenarios. Distinguishing between the various phenomena producing high velocity OVI will require continuing studies of the distances, kinematics, elemental abundances, and physical states of the different types of high velocity OVI features found in this study. (abbreviated)Comment: 78 pages of text/tables + 31 figures, AASTeX preprint format. All figures are in PNG format due to astro-ph space restrictions. Bound copies of manuscript and two accompanying articles are available upon request. Submitted to ApJ

    A Catalogue of Field Horizontal Branch Stars Aligned with High Velocity Clouds

    Full text link
    We present a catalogue of 430 Field Horizontal Branch (FHB) stars, selected from the Hamburg/ESO Survey (HES), which fortuitously align with high column density neutral hydrogen (HI) High-Velocity Cloud (HVC) gas. These stars are ideal candidates for absorption-line studies of HVCs, attempts at which have been made for almost 40 years with little success. A parent sample of 8321 HES FHB stars was used to extract HI spectra along each line-of-sight, using the HI Parkes All-Sky Survey. All lines-of-sight aligned with high velocity HI emission with peak brightness temperatures greater than 120mK were examined. The HI spectra of these 430 probes were visually screened and cross-referenced with several HVC catalogues. In a forthcoming paper, we report on the results of high-resolution spectroscopic observations of a sample of stars drawn from this catalogue.Comment: 7 pages, 4 figures. ApJS accepted. Full catalogue and all online-only images available at http://astronomy.swin.edu.au/staff/cthom/catalogue/index.htm

    Photometric validation of a model independent procedure to extract galaxy clusters

    Get PDF
    By means of CCD photometry in three bands (Gunn g, r, i) we investigate the existence of 12 candidate clusters extracted via a model independent peak finding algorithm (\cite{memsait}) from DPOSS data. The derived color-magnitude diagrams allow us to confirm the physical nature of 9 of the cluster candidates, and to estimate their photometric redshifts. Of the other candidates, one is a fortuitous detection of a true cluster at z~0.4, one is a false detection and the last is undecidable on the basis of the available data. The accuracy of the photometric redshifts is tested on an additional sample of 8 clusters with known spectroscopic redshifts. Photometric redshifts turn out to be accurate within z~0.01 (interquartile range).Comment: A&A in pres

    The Impact of Bisphenol A and Triclosan on Immune Parameters in the U.S. Population, NHANES 2003–2006

    Get PDF
    Background: Exposure to environmental toxicants is associated with numerous disease outcomes, many of which involve underlying immune and inflammatory dysfunction. Objectives: To address the gap between environmental exposures and immune dysfunction, we investigated the association of two endocrine-disrupting compounds (EDCs) with markers of immune function. Methods: Using data from the 2003–2006 National Health and Nutrition Examination Survey, we compared urinary bisphenol A (BPA) and triclosan levels with serum cytomegalovirus (CMV) antibody levels and diagnosis of allergies or hay fever in U.S. adults and children ≄ 6 years of age. We used multivariate ordinary least squares linear regression models to examine the association of BPA and triclosan with CMV antibody titers, and multivariate logistic regression models to investigate the association of these chemicals with allergy or hay fever diagnosis. Statistical models were stratified by age (\u3c 18 years and ≄ 18 years). Results: In analyses adjusted for age, sex, race, body mass index, creatinine levels, family income, and educational attainment, in the ≄ 18-year age group, higher urinary BPA levels were associated with higher CMV antibody titers (p \u3c 0.001). In the \u3c 18-year age group, lower levels of BPA were associated with higher CMV antibody titers (p \u3c 0.05). However, triclosan, but not BPA, showed a positive association with allergy or hay fever diagnosis. In the \u3c 18-year age group, higher levels of triclosan were associated with greater odds of having been diagnosed with allergies or hay fever (p \u3c 0.01). Conclusions: EDCs such as BPA and triclosan may negatively affect human immune function as measured by CMV antibody levels and allergy or hay fever diagnosis, respectively, with differential consequences based on age. Additional studies should be done to investigate these findings

    Observational evidence for self-interacting cold dark matter

    Get PDF
    Cosmological models with cold dark matter composed of weakly interacting particles predict overly dense cores in the centers of galaxies and clusters and an overly large number of halos within the Local Group compared to actual observations. We propose that the conflict can be resolved if the cold dark matter particles are self-interacting with a large scattering cross-section but negligible annihilation or dissipation. In this scenario, astronomical observations may enable us to study dark matter properties that are inaccessible in the laboratoryComment: 4 pages, no figures; added references, pedagogical improvements, to appear in PR

    The ACS LCID project. VI. The SFH of the Tucana dSph and the relative ages of the isolated dSph galaxies

    Full text link
    We present a detailed study of the star formation history (SFH) of the Tucana dwarf spheroidal galaxy. High quality, deep HST/ACS data, allowed us to obtain the deepest color-magnitude diagram to date, reaching the old main sequence turnoff (F814 ~ 29) with good photometric accuracy. Our analysis, based on three different SFH codes, shows that Tucana is an old and metal-poor stellar system, which experienced a strong initial burst of star formation at a very early epoch (~ 13 Gyr ago) which lasted a maximum of 1 Gyr (sigma value). We are not able to unambiguously answer the question of whether most star formation in Tucana occurred before or after the end of the reionization era, and we analyze alternative scenarios that may explain the transformation of Tucana from a gas-rich galaxy into a dSph. Current measurements of its radial velocity do not preclude that Tucana may have crossed the inner regions of the Local Group once, and so gas stripping by ram pressure and tides due to a close interaction cannot be ruled out. On the other hand, the high star formation rate measured at early times may have injected enough energy into the interstellar medium to blow out a significant fraction of the initial gas content. Gas that is heated but not blown out would also be more easily stripped via ram pressure. We compare the SFH inferred for Tucana with that of Cetus, the other isolated LG dSph galaxy in the LCID sample. We show that the formation time of the bulk of star formation in Cetus is clearly delayed with respect to that of Tucana. This reinforces the conclusion of Monelli et al. (2010) that Cetus formed the vast majority of its stars after the end of the reionization era implying, therefore, that small dwarf galaxies are not necessarily strongly affected by reionization, in agreement with many state-of-the-art cosmological models. [abridged]Comment: Accepted for publication on ApJ, 19 pages, 10 figures, 2 tables. A version with full resolution figures is available at http://www.iac.es/project/LCID/?p=publication

    The properties of Brightest Cluster Galaxies in the SDSS DR6 adaptive matched filter cluster catalogue

    Full text link
    We study the properties of Brightest Cluster Galaxies (BCGs) drawn from a catalogue of more than 69000 clusters in the SDSS DR6 based on the adaptive matched filter technique (AMF, Szabo et al., 2010). Our sample consists of more than 14300 galaxies in the redshift range 0.1-0.3. We test the catalog by showing that it includes well-known BCGs which lie in the SDSS footprint. We characterize the BCGs in terms of r-band luminosities and optical colours as well as their trends with redshift. In particular, we define and study the fraction of blue BCGs, namely those that are likely to be missed by either colour-based cluster surveys and catalogues. Richer clusters tend to have brighter BCGs, however less dominant than in poorer systems. 4-9% of our BCGs are at least 0.3 mag bluer in the g-r colour than the red-sequence at their given redshift. Such a fraction decreases to 1-6% for clusters above a richness of 50, where 3% of the BCGs are 0.5 mag below the red-sequence. A preliminary morphological study suggests that the increase in the blue fraction at lower richnesses may have a non-negligible contribution from spiral galaxies. We show that a colour selection based on the g-r red-sequence or on a cut at colour u-r >2.2 can lead to missing the majority of such blue BCGs. We also extend the colour analysis to the UV range by cross-matching our catalogue with publicly available data from Galex GR4 and GR5. We show a clear correlation between offset from the optical red-sequence and the amount of UV-excess. Finally, we cross-matched our catalogue with the ACCEPT cluster sample (Cavagnolo et al., 2009), and find that blue BCGs tend to be in clusters with low entropy and short cooling times. That is, the blue light is presumably due to recent star formation associated to gas feeding by cooling flows. (abridged)Comment: 15 pages, 15 figures, submitted to MNRA

    Complex C: A Low-Metallicity High-Velocity Cloud Plunging into the Milky Way

    Get PDF
    (Abridged) We present a new high-resolution (7 km/s FWHM) echelle spectrum of 3C 351 obtained with STIS. 3C 351 lies behind the low-latitude edge of high-velocity cloud Complex C, and the new spectrum provides accurate measurements of O I, Si II, Al II, Fe II, and Si III absorption lines at the velocity of the HVC. We use collisional and photoionization models to derive ionization corrections; in both models we find that the overall metallicity Z = 0.1 - 0.3 Z_{solar} in Complex C, but nitrogen must be underabundant. The iron abundance indicates that Complex C contains very little dust. The absorbing gas probably is not gravitationally confined. The gas could be pressure-confined by an external medium, but alternatively we may be viewing the leading edge of the HVC, which is ablating and dissipating as it plunges into the Milky Way. O VI column densities observed with FUSE toward nine QSOs/AGNs behind Complex C support this conclusion: N(O VI) is highest near 3C 351, and the O VI/H I ratio increases substantially with decreasing latitude, suggesting that the lower-latitude portion of the cloud is interacting more vigorously with the Galaxy. The other sight lines through Complex C show some dispersion in metallicity, but with the current uncertainties, the measurements are consistent with a constant metallicity throughout the HVC. However, all of the Complex C sight lines require significant nitrogen underabundances. Finally, we compare the 3C 351 sight line to the sight line to the nearby QSO H1821+643 to search for evidence of outflowing Galactic fountain gas that could be mixing with Complex C. We find that the intermediate-velocity gas detected toward 3C 351 and H1821+643 has a higher metallicity and may well be a fountain/chimney outflow from the Perseus spiral arm.Comment: Submitted to AJ. Figures 1-4 compressed for astro-ph; better quality figures are available at http://astro.princeton.edu/~tripp/astro/qualitypreps/complexc.ps.g

    Detecting clusters of galaxies in the Sloan Digital Sky Survey. I. Monte Carlo comparison of cluster detection algorithms

    Get PDF
    We present a comparison of three cluster-finding algorithms from imaging data using Monte Carlo simulations of clusters embedded in a 25 deg(2) region of Sloan Digital Sky Survey (SDSS) imaging data: the matched filter (MF; Postman et al., published in 1996), the adaptive matched filter (AMF; Kepner et al., published in 1999), and a color-magnitude filtered Voronoi tessellation technique (VTT). Among the two matched filters, we find that the MF is more efficient in detecting faint clusters, whereas the AMF evaluates the redshifts and richnesses more accurately, therefore suggesting a hybrid method (HMF) that combines the two. The HMF outperforms the VTT when using a background that is uniform, but it is more sensitive to the presence of a nonuniform galaxy background than is the VTT; this is due to the assumption of a uniform background in the HMF model. We thus find that for the detection thresholds we determine to be appropriate for the SDSS data, the performance of both algorithms are similar; we present the selection function for each method evaluated with these thresholds as a function of redshift and richness. For simulated clusters generated with a Schechter luminosity function ( M-r* = -21.5 and alpha = 1.1), both algorithms are complete for Abell richness greater than or similar to1 clusters up to z similar to 4 for a sample magnitude limited to r = 21. While the cluster parameter evaluation shows a mild correlation with the local background density, the detection efficiency is not significantly affected by the background fluctuations, unlike previous shallower surveys
    • 

    corecore