291 research outputs found

    Mechanism of the Inhibition of Ca2+-Activated Cl− Currents by Phosphorylation in Pulmonary Arterial Smooth Muscle Cells

    Get PDF
    The aim of the present study was to provide a mechanistic insight into how phosphatase activity influences calcium-activated chloride channels in rabbit pulmonary artery myocytes. Calcium-dependent Cl− currents (IClCa) were evoked by pipette solutions containing concentrations between 20 and 1000 nM Ca2+ and the calcium and voltage dependence was determined. Under control conditions with pipette solutions containing ATP and 500 nM Ca2+, IClCa was evoked immediately upon membrane rupture but then exhibited marked rundown to ∼20% of initial values. In contrast, when phosphorylation was prohibited by using pipette solutions containing adenosine 5′-(β,γ-imido)-triphosphate (AMP-PNP) or with ATP omitted, the rundown was severely impaired, and after 20 min dialysis, IClCa was ∼100% of initial levels. IClCa recorded with AMP-PNP–containing pipette solutions were significantly larger than control currents and had faster kinetics at positive potentials and slower deactivation kinetics at negative potentials. The marked increase in IClCa was due to a negative shift in the voltage dependence of activation and not due to an increase in the apparent binding affinity for Ca2+. Mathematical simulations were carried out based on gating schemes involving voltage-independent binding of three Ca2+, each binding step resulting in channel opening at fixed calcium but progressively greater “on” rates, and voltage-dependent closing steps (“off” rates). Our model reproduced well the Ca2+ and voltage dependence of IClCa as well as its kinetic properties. The impact of global phosphorylation could be well mimicked by alterations in the magnitude, voltage dependence, and state of the gating variable of the channel closure rates. These data reveal that the phosphorylation status of the Ca2+-activated Cl− channel complex influences current generation dramatically through one or more critical voltage-dependent steps

    Low-mass members of the young cluster IC 4665 and pre-main-sequence lithium depletion

    Full text link
    We have used fibre spectroscopy to establish cluster membership and examine pre-main-sequence (PMS) lithium depletion for low-mass stars (spectral types F to M) in the sparse young (~30 Myr) cluster IC 4665. We present a filtered candidate list of 40 stars that should contain 75 per cent of single cluster members with V of 11.5 to 18 in the central square degree of the cluster. Whilst F- and G-type stars in IC 4665 have depleted little or no lithium, the K- and early M-type stars have depleted more Li than expected when compared with similar stars in other clusters of known age. An empirical age estimate based on Li-depletion among the late-type stars of IC 4665 would suggest it is older than 100 Myr. This disagrees entirely with ages determined either from the nuclear turn-off, from isochronal matches to low-mass stars or from the re-appearance of lithium previously found in much lower mass stars (the ``lithium depletion boundary''). We suggest that other parameters besides age, perhaps composition or rotation, are very influential in determining the degree of PMS Li-depletion in stars with M greater than 0.5 Msun. Further work is required to identify and assess the effects of these additional parameters, particularly to probe conditions at the interface between the sub-photospheric convection zone and developing radiative core. Until then, PMS Li depletion in F- to early M-type stars cannot be confidently used as a precise age indicator in young clusters, kinematic groups or individual field stars.Comment: Accepted for publication in MNRA

    Plasma Dynamics

    Get PDF
    Contains reports on twenty research projects split into two sections.National Science Foundation (Grant ENG75-06242-A01)U. S. Energy Research and Development Administration (Contract E(11-1)-2766)U. S. Energy Research and Development Administration (Contract E(11-1)-3070

    Species and population specific gene expression in blood transcriptomes of marine turtles

    Get PDF
    Background: Transcriptomic data has demonstrated utility to advance the study of physiological diversity and organisms’ responses to environmental stressors. However, a lack of genomic resources and challenges associated with collecting high-quality RNA can limit its application for many wild populations. Minimally invasive blood sampling combined with de novo transcriptomic approaches has great potential to alleviate these barriers. Here, we advance these goals for marine turtles by generating high quality de novo blood transcriptome assemblies to characterize functional diversity and compare global transcriptional profiles between tissues, species, and foraging aggregations. Results: We generated high quality blood transcriptome assemblies for hawksbill (Eretmochelys imbricata), loggerhead (Caretta caretta), green (Chelonia mydas), and leatherback (Dermochelys coriacea) turtles. The functional diversity in assembled blood transcriptomes was comparable to those from more traditionally sampled tissues. A total of 31.3% of orthogroups identified were present in all four species, representing a core set of conserved genes expressed in blood and shared across marine turtle species. We observed strong species-specific expression of these genes, as well as distinct transcriptomic profiles between green turtle foraging aggregations that inhabit areas of greater or lesser anthropogenic disturbance. Conclusions: Obtaining global gene expression data through non-lethal, minimally invasive sampling can greatly expand the applications of RNA-sequencing in protected long-lived species such as marine turtles. The distinct differences in gene expression signatures between species and foraging aggregations provide insight into the functional genomics underlying the diversity in this ancient vertebrate lineage. The transcriptomic resources generated here can be used in further studies examining the evolutionary ecology and anthropogenic impacts on marine turtles

    Plasma Dynamics

    Get PDF
    Contains research objectives and summary of research on nineteen research projects split into five sections.National Science Foundation (Grant ENG75-06242-A01)U.S. Energy Research and Development Administration (Contract E(11-1)-2766)U.S. Air Force - Office of Scientific Research (Grant AFOSR-77-3143)U.S. Energy Research and Development Administration (Contract EY-76-C2-02-3070.*000

    SHAPE analysis of the FIV Leader RNA reveals a structural switch potentially controlling viral packaging and genome dimerization

    Get PDF
    Feline immunodeficiency virus (FIV) infects many species of cat, and is related to HIV, causing a similar pathology. High-throughput selective 2′ hydroxyl acylation analysed by primer extension (SHAPE), a technique that allows structural interrogation at each nucleotide, was used to map the secondary structure of the FIV packaging signal RNA. Previous studies of this RNA showed four conserved stem–loops, extensive long-range interactions (LRIs) and a small, palindromic stem–loop (SL5) within the gag open reading frame (ORF) that may act as a dimerization initiation site (DIS), enabling the virus to package two copies of its genome. Our analyses of wild-type (wt) and mutant RNAs suggest that although the four conserved stem–loops are static structures, the 5′ and 3′ regions previously shown to form LRI also adopt an alternative, yet similarly conserved conformation, in which the putative DIS is occluded, and which may thus favour translational and splicing functions over encapsidation. SHAPE and in vitro dimerization assays were used to examine SL5 mutants. Dimerization contacts appear to be made between palindromic loop sequences in SL5. As this stem–loop is located within the gag ORF, recognition of a dimeric RNA provides a possible mechanism for the specific packaging of genomic over spliced viral RNAs

    Plasma Dynamics

    Get PDF
    Contains reports on seventeen research projects split into two sections.National Science Foundation (Grant ENG77-00340)U. S. Energy Research and Development Administration (Contract E(11-1)-2766)U. S. Energy Research and Development Administration (Contract EY-76-S-02-2766)U. S. Air Force - Office of Scientific Research (Grant AFOSR-77-3143)U. S. Department of Energy (Grant EG-77-G-01-4107

    Morphogenesis of Strongyloides stercoralis Infective Larvae Requires the DAF-16 Ortholog FKTF-1

    Get PDF
    Based on metabolic and morphological similarities between infective third-stage larvae of parasitic nematodes and dauer larvae of Caenorhabditis elegans, it is hypothesized that similar genetic mechanisms control the development of these forms. In the parasite Strongyloides stercoralis, FKTF-1 is an ortholog of DAF-16, a forkhead transcription factor that regulates dauer larval development in C. elegans. Using transgenesis, we investigated the role of FKTF-1 in S. stercoralis' infective larval development. In first-stage larvae, GFP-tagged recombinant FKTF-1b localizes to the pharynx and hypodermis, tissues remodeled in infective larvae. Activating and inactivating mutations at predicted AKT phosphorylation sites on FKTF-1b give constitutive cytoplasmic and nuclear localization of the protein, respectively, indicating that its post-translational regulation is similar to other FOXO-class transcription factors. Mutant constructs designed to interfere with endogenous FKTF-1b function altered the intestinal and pharyngeal development of the larvae and resulted in some transgenic larvae failing to arrest in the infective stage. Our findings indicate that FKTF-1b is required for proper morphogenesis of S. stercoralis infective larvae and support the overall hypothesis of similar regulation of dauer development in C. elegans and the formation of infective larvae in parasitic nematodes

    Plasma Dynamics

    Get PDF
    Contains research objectives and summary of research on twenty-one projects split into three sections, with four sub-sections in the second section and reports on twelve research projects.National Science Foundation (Grant ENG75-06242)U.S. Energy Research and Development Administration (Contract E(11-1)-2766)U.S. Energy Research and Development Agency (Contract E(11-1)-3070)U.S. Energy Research and Development Administration (Contract E(11-1)-3070)Research Laboratory of Electronics, M.I.T. Industrial Fellowshi
    corecore