556 research outputs found

    Apparent correlation of palaeomagnetic intensity and climatic records in deep-sea sediments

    Get PDF
    Most reports of a correlation between Pleistocene climate and geomagnetic field intensity rely strongly on the assumption that sediment natural remanent magnetic (NRM) intensity provides a record of geomagnetic field strength and is not sensitive to local changes in properties of the sediment. Critical assessment of relevant data presented here and elsewhere from deep-sea sediment cores shows that a pronounced dependence of NRM intensity on sediment composition can occur which implies that this assumption is unlikely to be generally valid. As sediment composition often reflects varying depositional conditions induced by climatic change, the significance of correlations proposed between Pleistocene palaeomagnetism and climatic indicators in deep-sea sediments may be less dramatic than sometimes supposed

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Frequency-dependent selection in vaccine-associated pneumococcal population dynamics

    Get PDF
    Many bacterial species are composed of multiple lineages distinguished by extensive variation in gene content. These often cocirculate in the same habitat, but the evolutionary and ecological processes that shape these complex populations are poorly understood. Addressing these questions is particularly important for Streptococcus pneumoniae, a nasopharyngeal commensal and respiratory pathogen, because the changes in population structure associated with the recent introduction of partial-coverage vaccines have substantially reduced pneumococcal disease. Here we show that pneumococcal lineages from multiple populations each have a distinct combination of intermediate-frequency genes. Functional analysis suggested that these loci may be subject to negative frequency-dependent selection (NFDS) through interactions with other bacteria, hosts or mobile elements. Correspondingly, these genes had similar frequencies in four populations with dissimilar lineage compositions. These frequencies were maintained following substantial alterations in lineage prevalences once vaccination programmes began. Fitting a multilocus NFDS model of post-vaccine population dynamics to three genomic datasets using Approximate Bayesian Computation generated reproducible estimates of the influence of NFDS on pneumococcal evolution, the strength of which varied between loci. Simulations replicated the stable frequency of lineages unperturbed by vaccination, patterns of serotype switching and clonal replacement. This framework highlights how bacterial ecology affects the impact of clinical interventions.Accessory loci are shown to have similar frequencies in diverse Streptococcus pneumoniae populations, suggesting negative frequency-dependent selection drives post-vaccination population restructuring

    The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding.

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this record. N-acetyl-d-glucosamine (GlcNAc) is a major component of bacterial cell walls. Many organisms recycle GlcNAc from the cell wall or metabolize environmental GlcNAc. The first step in GlcNAc metabolism is phosphorylation to GlcNAc-6-phosphate. In bacteria, the ROK family kinase N-acetylglucosamine kinase (NagK) performs this activity. Although ROK kinases have been studied extensively, no ternary complex showing the two substrates has yet been observed. Here, we solved the structure of NagK from the human pathogen Plesiomonas shigelloides in complex with GlcNAc and the ATP analog AMP-PNP. Surprisingly, PsNagK showed distinct conformational changes associated with the binding of each substrate. Consistent with this, the enzyme showed a sequential random enzyme mechanism. This indicates that the enzyme acts as a coordinated unit responding to each interaction. Our molecular dynamics modeling of catalytic ion binding confirmed the location of the essential catalytic metal. Additionally, site-directed mutagenesis confirmed the catalytic base and that the metal-coordinating residue is essential. Together, this study provides the most comprehensive insight into the activity of a ROK kinase.Biotechnology and Biological Sciences Research Council (BBSRC)National Science FoundationUK Research and Innovatio

    IMPLEmenting a clinical practice guideline for acute low back pain evidence-based manageMENT in general practice (IMPLEMENT) : cluster randomised controlled trial study protocol

    Get PDF
    Background: Evidence generated from reliable research is not frequently implemented into clinical practice. Evidence-based clinical practice guidelines are a potential vehicle to achieve this. A recent systematic review of implementation strategies of guideline dissemination concluded that there was a lack of evidence regarding effective strategies to promote the uptake of guidelines. Recommendations from this review, and other studies, have suggested the use of interventions that are theoretically based because these may be more effective than those that are not. An evidencebased clinical practice guideline for the management of acute low back pain was recently developed in Australia. This provides an opportunity to develop and test a theory-based implementation intervention for a condition which is common, has a high burden, and for which there is an evidence-practice gap in the primary care setting. Aim: This study aims to test the effectiveness of a theory-based intervention for implementing a clinical practice guideline for acute low back pain in general practice in Victoria, Australia. Specifically, our primary objectives are to establish if the intervention is effective in reducing the percentage of patients who are referred for a plain x-ray, and improving mean level of disability for patients three months post-consultation. Methods/Design: This study protocol describes the details of a cluster randomised controlled trial. Ninety-two general practices (clusters), which include at least one consenting general practitioner, will be randomised to an intervention or control arm using restricted randomisation. Patients aged 18 years or older who visit a participating practitioner for acute non-specific low back pain of less than three months duration will be eligible for inclusion. An average of twenty-five patients per general practice will be recruited, providing a total of 2,300 patient participants. General practitioners in the control arm will receive access to the guideline using the existing dissemination strategy. Practitioners in the intervention arm will be invited to participate in facilitated face-to-face workshops that have been underpinned by behavioural theory. Investigators (not involved in the delivery of the intervention), patients, outcome assessors and the study statistician will be blinded to group allocation. Trial registration: Australian New Zealand Clinical Trials Registry ACTRN012606000098538 (date registered 14/03/2006).The trial is funded by the NHMRC by way of a Primary Health Care Project Grant (334060). JF has 50% of her time funded by the Chief Scientist Office3/2006). of the Scottish Government Health Directorate and 50% by the University of Aberdeen. PK is supported by a NHMRC Health Professional Fellowship (384366) and RB by a NHMRC Practitioner Fellowship (334010). JG holds a Canada Research Chair in Health Knowledge Transfer and Uptake. All other authors are funded by their own institutions

    Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data

    Get PDF
    Background: MicroRNAs (miRNAs) are short, non-coding RNA regulators of protein coding genes. miRNAs play a very important role in diverse biological processes and various diseases. Many algorithms are able to predict miRNA genes and their targets, but their transcription regulation is still under investigation. It is generally believed that intragenic miRNAs (located in introns or exons of protein coding genes) are co-transcribed with their host genes and most intergenic miRNAs transcribed from their own RNA polymerase II (Pol II) promoter. However, the length of the primary transcripts and promoter organization is currently unknown. Methodology: We performed Pol II chromatin immunoprecipitation (ChIP)-chip using a custom array surrounding regions of known miRNA genes. To identify the true core transcription start sites of the miRNA genes we developed a new tool (CPPP). We showed that miRNA genes can be transcribed from promoters located several kilobases away and that their promoters share the same general features as those of protein coding genes. Finally, we found evidence that as many as 26% of the intragenic miRNAs may be transcribed from their own unique promoters. Conclusion: miRNA promoters have similar features to those of protein coding genes, but miRNA transcript organization is more complex. © 2009 Corcoran et al

    Identifying hypothetical genetic influences on complex disease phenotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Statistical interactions between disease-associated loci of complex genetic diseases suggest that genes from these regions are involved in a common mechanism impacting, or impacted by, the disease. The computational problem we address is to discover relationships among genes from these interacting regions that may explain the observed statistical interaction and the role of these genes in the disease phenotype.</p> <p>Results</p> <p>We describe a heuristic algorithm for generating hypothetical gene relationships from loci associated with a complex disease phenotype. This approach, called Prioritizing Disease Genes by Analysis of Common Elements (PDG-ACE), mines biomedical keywords from text descriptions of genes and uses them to relate genes close to disease-associated loci. A keyword common to, and significantly over-represented in, a pair of gene descriptions may represent a preliminary hypothesis about the biological relationship between the genes, and suggest the role the genes play in the disease phenotype.</p> <p>Conclusion</p> <p>Our experimentation shows that the approach finds previously published relationships, while failing to find relationships that don't exist. The results also indicate that the approach is robust to differences in keyword vocabulary. We outline a brief case study in which results from a recently published Type 2 Diabetes association study are used to identify potential hypotheses.</p

    Comparative Field Evaluation of Combinations of Long-Lasting Insecticide Treated Nets and Indoor Residual Spraying, Relative to Either Method Alone, for Malaria Prevention in an Area where the main Vector is Anopheles Arabiensis.

    Get PDF
    Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are commonly used together in the same households to improve malaria control despite inconsistent evidence on whether such combinations actually offer better protection than nets alone or IRS alone. Comparative tests were conducted using experimental huts fitted with LLINs, untreated nets, IRS plus untreated nets, or combinations of LLINs and IRS, in an area where Anopheles arabiensis is the predominant malaria vector species. Three LLIN types, Olyset®, PermaNet 2.0® and Icon Life® nets and three IRS treatments, pirimiphos-methyl, DDT, and lambda cyhalothrin, were used singly or in combinations. We compared, number of mosquitoes entering huts, proportion and number killed, proportions prevented from blood-feeding, time when mosquitoes exited the huts, and proportions caught exiting. The tests were done for four months in dry season and another six months in wet season, each time using new intact nets. All the net types, used with or without IRS, prevented >99% of indoor mosquito bites. Adding PermaNet 2.0® and Icon Life®, but not Olyset® nets into huts with any IRS increased mortality of malaria vectors relative to IRS alone. However, of all IRS treatments, only pirimiphos-methyl significantly increased vector mortality relative to LLINs alone, though this increase was modest. Overall, median mortality of An. arabiensis caught in huts with any of the treatments did not exceed 29%. No treatment reduced entry of the vectors into huts, except for marginal reductions due to PermaNet 2.0® nets and DDT. More than 95% of all mosquitoes were caught in exit traps rather than inside huts. Where the main malaria vector is An. arabiensis, adding IRS into houses with intact pyrethroid LLINs does not enhance house-hold level protection except where the IRS employs non-pyrethroid insecticides such as pirimiphos-methyl, which can confer modest enhancements. In contrast, adding intact bednets onto IRS enhances protection by preventing mosquito blood-feeding (even if the nets are non-insecticidal) and by slightly increasing mosquito mortality (in case of LLINs). The primary mode of action of intact LLINs against An. arabiensis is clearly bite prevention rather than insecticidal activity. Therefore, where resources are limited, priority should be to ensure that everyone at risk consistently uses LLINs and that the nets are regularly replaced before being excessively torn. Measures that maximize bite prevention (e.g. proper net sizes to effectively cover sleeping spaces, stronger net fibres that resist tears and burns and net use practices that preserve net longevity), should be emphasized

    Cancer somatic mutations cluster in a subset of regulatory sites predicted from the ENCODE data

    Get PDF
    Background: Transcriptional regulation of gene expression is essential for cellular differentiation and function, and defects in the process are associated with cancer. The ENCODE project has mapped potential regulatory sites across the complete genome in many cell types, and these regions have been shown to harbour many of the somatic mutations that occur in cancer cells, suggesting that their effects may drive cancer initiation and development. The ENCODE data suggests a very large number of regulatory sites, and methods are needed to identify those that are most relevant and to connect them to the genes that they control. Methods: Predictive models of gene expression were developed by integrating the ENCODE data for regulation, including transcription factor binding and DNase1 hypersensitivity, with RNA-seq data for gene expression. A penalized regression method was used to identify the most predictive potential regulatory sites for each transcript. Known cancer somatic mutations from the COSMIC database were mapped to potential regulatory sites, and we examined differences in the mapping frequencies associated with sites chosen in regulatory models and other (rejected) sites. The effects of potential confounders, for example replication timing, were considered. Results: Cancer somatic mutations preferentially occupy those regulatory regions chosen in our models as most predictive of gene expression. Conclusion: Our methods have identified a significantly reduced set of regulatory sites that are enriched in cancer somatic mutations and are more predictive of gene expression. This has significance for the mechanistic interpretation of cancer mutations, and the understanding of genetic regulation

    Chronic non-specific low back pain - sub-groups or a single mechanism?

    Get PDF
    Copyright 2008 Wand and O'Connell; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Low back pain is a substantial health problem and has subsequently attracted a considerable amount of research. Clinical trials evaluating the efficacy of a variety of interventions for chronic non-specific low back pain indicate limited effectiveness for most commonly applied interventions and approaches. Discussion: Many clinicians challenge the results of clinical trials as they feel that this lack of effectiveness is at odds with their clinical experience of managing patients with back pain. A common explanation for this discrepancy is the perceived heterogeneity of patients with chronic non-specific low back pain. It is felt that the effects of treatment may be diluted by the application of a single intervention to a complex, heterogeneous group with diverse treatment needs. This argument presupposes that current treatment is effective when applied to the correct patient. An alternative perspective is that the clinical trials are correct and current treatments have limited efficacy. Preoccupation with sub-grouping may stifle engagement with this view and it is important that the sub-grouping paradigm is closely examined. This paper argues that there are numerous problems with the sub-grouping approach and that it may not be an important reason for the disappointing results of clinical trials. We propose instead that current treatment may be ineffective because it has been misdirected. Recent evidence that demonstrates changes within the brain in chronic low back pain sufferers raises the possibility that persistent back pain may be a problem of cortical reorganisation and degeneration. This perspective offers interesting insights into the chronic low back pain experience and suggests alternative models of intervention. Summary: The disappointing results of clinical research are commonly explained by the failure of researchers to adequately attend to sub-grouping of the chronic non-specific low back pain population. Alternatively, current approaches may be ineffective and clinicians and researchers may need to radically rethink the nature of the problem and how it should best be managed
    corecore