58 research outputs found

    Verification of model simulated mass balance, flow fields and tabular calving events of the Antarctic ice sheet against remotely sensed observations

    Get PDF
    The Antarctic ice sheet (AIS) has the greatestpotential for global sea level rise. This study simulates AISice creeping, sliding, tabular calving, and estimates the totalmass balances, using a recently developed, advanced icedynamics model, known as SEGMENT-Ice. SEGMENTIceis written in a spherical Earth coordinate system.Because the AIS contains the South Pole, a projectiontransfer is performed to displace the pole outside of thesimulation domain. The AIS also has complex ice-watergranularmaterial-bedrock configurations, requiringsophisticated lateral and basal boundary conditions.Because of the prevalence of ice shelves, a ‘girder yield’type calving scheme is activated. The simulations of presentsurface ice flow velocities compare favorably with InSARmeasurements, for various ice-water-bedrock configurations.The estimated ice mass loss rate during 2003–2009agrees with GRACE measurements and provides morespatial details not represented by the latter. The modelestimated calving frequencies of the peripheral ice shelvesfrom 1996 (roughly when the 5-km digital elevation andthickness data for the shelves were collected) to 2009compare well with archived scatterometer images. SEGMENT-Ice’s unique, non-local systematic calving schemeis found to be relevant for tabular calving. However, theexact timing of calving and of iceberg sizes cannot besimulated accurately at present. A projection of the futuremass change of the AIS is made, with SEGMENT-Iceforced by atmospheric conditions from three differentcoupled general circulation models. The entire AIS is estimatedto be losing mass steadily at a rate of*120 km3/a atpresent and this rate possibly may double by year 2100

    Three Etiologic Facets of Dandruff and Seborrheic Dermatitis: Malassezia Fungi, Sebaceous Lipids, and Individual Sensitivity

    Get PDF
    Application of new molecular and biochemical tools has greatly increased our understanding of the organisms, mechanisms, and treatments of dandruff and seborrheic dermatitis. Dandruff results from at least three etiologic factors: Malassezia fungi, sebaceous secretions, and individual sensitivity. While Malassezia (formerly P. ovale) has long been a suspected cause, implicated by its presence on skin and lipophylic nature, lack of correlation between Malassezia number and the presence and severity of dandruff has remained perplexing. We have previously identified the Malassezia species correlating to dandruff and seborrheic dermatitis. In this report, we show that dandruff is mediated by Malassezia metabolites, specifically irritating free fatty acids released from sebaceous triglycerides. Investigation of the toxic Malassezia free fatty acid metabolites (represented by oleic acid) reveals the component of individual susceptibility. Malassezia metabolism results in increased levels of scalp free fatty acids. Of the three etiologic factors implicated in dandruff, Malassezia, sebaceous triglycerides, and individual susceptibility, Malassezia are the easiest to control. Pyrithione zinc kills Malassezia and all other fungi, and is highly effective against the Malassezia species actually found on scalp. Reduction in fungi reduces free fatty acids, thereby reducing scalp flaking and itch
    • …
    corecore