69 research outputs found

    Serodiagnosis and Bacterial Genome of Helicobacter pylori Infection

    Get PDF
    The infection caused by Helicobacter pylori is associated with several diseases, including gastric cancer. Several methods for the diagnosis of H. pylori infection exist, including endoscopy, the urea breath test, and the fecal antigen test, which is the serum antibody titer test that is often used since it is a simple and highly sensitive test. In this context, this study aims to find the association between different antibody reactivities and the organization of bacterial genomes. Next-generation sequences were performed to determine the genome sequences of four strains of antigens with different reactivity. The search was performed on the common genes, with the homology analysis conducted using a genome ring and dot plot analysis. The two antigens of the highly reactive strains showed a high gene homology, and Western blots for CagA and VacA also showed high expression levels of proteins. In the poorly responsive antigen strains, it was found that the inversion occurred around the vacA gene in the genome. The structure of bacterial genomes might contribute to the poor reactivity exhibited by the antibodies of patients. In the future, an accurate serodiagnosis could be performed by using a strain with few gene mutations of the antigen used for the antibody titer test of H. pylori

    A Novel ATM/TP53/p21-Mediated Checkpoint Only Activated by Chronic γ-Irradiation

    Get PDF
    Different levels or types of DNA damage activate distinct signaling pathways that elicit various cellular responses, including cell-cycle arrest, DNA repair, senescence, and apoptosis. Whereas a range of DNA-damage responses have been characterized, mechanisms underlying subsequent cell-fate decision remain elusive. Here we exposed cultured cells and mice to different doses and dose rates of γ-irradiation, which revealed cell-type-specific sensitivities to chronic, but not acute, γ-irradiation. Among tested cell types, human fibroblasts were associated with the highest levels of growth inhibition in response to chronic γ-irradiation. In this context, fibroblasts exhibited a reversible G1 cell-cycle arrest or an irreversible senescence-like growth arrest, depending on the irradiation dose rate or the rate of DNA damage. Remarkably, when the same dose of γ-irradiation was delivered chronically or acutely, chronic delivery induced considerably more cellular senescence. A similar effect was observed with primary cells isolated from irradiated mice. We demonstrate a critical role for the ataxia telangiectasia mutated (ATM)/tumor protein p53 (TP53)/p21 pathway in regulating DNA-damage-associated cell fate. Indeed, blocking the ATM/TP53/p21 pathway deregulated DNA damage responses, leading to micronucleus formation in chronically irradiated cells. Together these results provide insights into the mechanisms governing cell-fate determination in response to different rates of DNA damage

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    cDNA cloning and sequencing of phospholipase A2 from the pyloric ceca of the starfish Asterina pectinifera

    Get PDF
    Three cDNA from the pyloric ceca of the starfish Asterina pectinifera, (namely, cDNA 1, 2, and 3), encoding phospholipase A2 (PLA2), were isolated and sequenced. These cDNAs were composed of 415 bp with an open reading frame of 414 bp at nucleotide positions 1–414, which encodes 138 amino acids including N-terminal Met derived from the PCR primer. The amino acid sequence deduced from the cDNA 1 was completely consistent with the sequence determined with the starfish PLA2 protein, while those deduced from cDNA 2 and cDNA 3 differed at one and twelve amino acid residual positions, respectively, from the sequence of the PLA2 protein, suggesting the presence of multiple forms in the starfish PLA2. All of the sequences deduced from cDNA 1, 2, and 3 required two amino acid deletions in pancreatic loop region, and sixteen insertions and three deletions in β-wing region when aligned with the sequence of mammalian pancreatic PLA2. In phylogenetic tree, the starfish PLA2 should be classified into an independent group, but hardly to the established groups IA and IB. The characteristic structure in the pancreatic loop and β-wing regions may account for the specific properties of the starfish PLA2, e.g. the higher activity and characteristic substrate specificity compared with commercially available PLA2 from porcine pancreas

    Bacterial expression and characterization of starfish phospholipase A2

    Get PDF
    Phospholipase A2 (PLA2) from the pyloric ceca of the starfish Asterina pectinifera showed high specific activity and characteristic substrate specificity, compared with commercially available PLA2 from porcine pancreas. To investigate enzymatic properties of the starfish PLA2 in further detail, we constructed a bacterial expression system for the enzyme. The starfish PLA2 cDNA isolated previously (Kishimura et al., 2000b. cDNA cloning and sequencing of phospholipase A2 from the pyloric ceca of the starfish Asterina pectinifera. Comp. Biochem. Physiol. 126B, 579-586) was inserted into the expression plasmid pET-16b and the PLA2 protein was expressed in Escherichia coli BL21 (DE3) by induction with isopropyl-β-(–)-thiogalactopyranoside. The recombinant PLA2 produced as inclusion bodies was dissociated with 8 M urea and 10 mM 2-mercaptoethanol and renatured by dialyzing against 10 mM Tris–HCl buffer (pH 8.0). Renatured PLA2 was purified by subsequent column chromatographies on DEAE–cellulose (DE-52) and Sephadex G-50. Although an N-terminal Ser in the native starfish PLA2 was replaced by an Ala in the recombinant PLA2, the recombinant enzyme showed essentially the same properties as did the native PLA2 with respect to specific activity, substrate specificity, optimum pH and temperature, and Ca2+ requirement

    Wave-based analysis and wave control of damped mass-spring systems

    No full text
    corecore