788 research outputs found

    Unsharp Degrees of Freedom and the Generating of Symmetries

    Get PDF
    In quantum theory, real degrees of freedom are usually described by operators which are self-adjoint. There are, however, exceptions to the rule. This is because, in infinite dimensional Hilbert spaces, an operator is not necessarily self-adjoint even if its expectation values are real. Instead, the operator may be merely symmetric. Such operators are not diagonalizable - and as a consequence they describe real degrees of freedom which display a form of "unsharpness" or "fuzzyness". For example, there are indications that this type of operators could arise with the description of space-time at the string or at the Planck scale, where some form of unsharpness or fuzzyness has long been conjectured. A priori, however, a potential problem with merely symmetric operators is the fact that, unlike self-adjoint operators, they do not generate unitaries - at least not straightforwardly. Here, we show for a large class of these operators that they do generate unitaries in a well defined way, and that these operators even generate the entire unitary group of the Hilbert space. This shows that merely symmetric operators, in addition to describing unsharp physical entities, may indeed also play a r{\^o}le in the generation of symmetries, e.g. within a fundamental theory of quantum gravity.Comment: 23 pages, LaTe

    Mode Generating Mechanism in Inflation with Cutoff

    Get PDF
    In most inflationary models, space-time inflated to the extent that modes of cosmological size originated as modes of wavelengths at least several orders of magnitude smaller than the Planck length. Recent studies confirmed that, therefore, inflationary predictions for the cosmic microwave background perturbations are generally sensitive to what is assumed about the Planck scale. Here, we propose a framework for field theories on curved backgrounds with a plausible type of ultraviolet cutoff. We find an explicit mechanism by which during cosmic expansion new (comoving) modes are generated continuously. Our results allow the numerical calculation of a prediction for the CMB perturbation spectrum.Comment: 9 pages, LaTe

    Coherent States for the Non-Linear Harmonic Oscillator

    Full text link
    Wave packets for the Quantum Non-Linear Oscillator are considered in the Generalized Coherent State framerwork. To first order in the non-linearity parameter the Coherent State behaves very similarly to its classical counterpart. The position expectation value oscillates in a simple harmonic manner. The energy-momentum uncertainty relation is time independent as in a harmonic oscillator. Various features, (such as the Squeezed State nature), of the Coherent State have been discussed

    Resolution of null fiber and conormal bundles on the Lagrangian Grassmannian

    Full text link
    We study the null fiber of a moment map related to dual pairs. We construct an equivariant resolution of singularities of the null fiber, and get conormal bundles of closed KC K_C -orbits in the Lagrangian Grassmannian as the categorical quotient. The conormal bundles thus obtained turn out to be a resolution of singularities of the closure of nilpotent KC K_C -orbits, which is a "quotient" of the resolution of the null fiber.Comment: 17 pages; completely revised and add reference

    Operator identities in q-deformed Clifford analysis

    Get PDF
    In this paper, we define a q-deformation of the Dirac operator as a generalization of the one dimensional q-derivative. This is done in the abstract setting of radial algebra. This leads to a q-Dirac operator in Clifford analysis. The q-integration on R(m), for which the q-Dirac operator satisfies Stokes' formula, is defined. The orthogonal q-Clifford-Hermite polynomials for this integration are briefly studied

    Deformed algebras, position-dependent effective masses and curved spaces: An exactly solvable Coulomb problem

    Full text link
    We show that there exist some intimate connections between three unconventional Schr\"odinger equations based on the use of deformed canonical commutation relations, of a position-dependent effective mass or of a curved space, respectively. This occurs whenever a specific relation between the deforming function, the position-dependent mass and the (diagonal) metric tensor holds true. We illustrate these three equivalent approaches by considering a new Coulomb problem and solving it by means of supersymmetric quantum mechanical and shape invariance techniques. We show that in contrast with the conventional Coulomb problem, the new one gives rise to only a finite number of bound states.Comment: 22 pages, no figure. Archive version is already official. Published by JPA at http://stacks.iop.org/0305-4470/37/426

    Twisted Classical Poincar\'{e} Algebras

    Full text link
    We consider the twisting of Hopf structure for classical enveloping algebra U(g^)U(\hat{g}), where g^\hat{g} is the inhomogenous rotations algebra, with explicite formulae given for D=4D=4 Poincar\'{e} algebra (g^=P4).(\hat{g}={\cal P}_4). The comultiplications of twisted UF(P4)U^F({\cal P}_4) are obtained by conjugating primitive classical coproducts by FU(c^)U(c^),F\in U(\hat{c})\otimes U(\hat{c}), where c^\hat{c} denotes any Abelian subalgebra of P4{\cal P}_4, and the universal RR-matrices for UF(P4)U^F({\cal P}_4) are triangular. As an example we show that the quantum deformation of Poincar\'{e} algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincar\'{e} algebra. The interpretation of twisted Poincar\'{e} algebra as describing relativistic symmetries with clustered 2-particle states is proposed.Comment: \Large \bf 19 pages, Bonn University preprint, November 199

    Matrix oscillator and Calogero-type models

    Full text link
    We study a single matrix oscillator with the quadratic Hamiltonian and deformed commutation relations. It is equivalent to the multispecies Calogero model in one dimension, with inverse-square two-body and three-body interactions. Specially, we have constructed a new matrix realization of the Calogero model for identical particles, without using exchange operators. The critical points at which singular behaviour occurs are briefly discussed.Comment: Accepted for publication in Phys.Lett.

    Motivic Serre invariants, ramification, and the analytic Milnor fiber

    Full text link
    We show how formal and rigid geometry can be used in the theory of complex singularities, and in particular in the study of the Milnor fibration and the motivic zeta function. We introduce the so-called analytic Milnor fiber associated to the germ of a morphism f from a smooth complex algebraic variety X to the affine line. This analytic Milnor fiber is a smooth rigid variety over the field of Laurent series C((t)). Its etale cohomology coincides with the singular cohomology of the classical topological Milnor fiber of f; the monodromy transformation is given by the Galois action. Moreover, the points on the analytic Milnor fiber are closely related to the motivic zeta function of f, and the arc space of X. We show how the motivic zeta function can be recovered as some kind of Weil zeta function of the formal completion of X along the special fiber of f, and we establish a corresponding Grothendieck trace formula, which relates, in particular, the rational points on the analytic Milnor fiber over finite extensions of C((t)), to the Galois action on its etale cohomology. The general observation is that the arithmetic properties of the analytic Milnor fiber reflect the structure of the singularity of the germ f.Comment: Some minor errors corrected. The original publication is available at http://www.springerlink.co

    The 10 micron amorphous silicate feature of fractal aggregates and compact particles with complex shapes

    Get PDF
    We model the 10 micron absorption spectra of nonspherical particles composed of amorphous silicate. We consider two classes of particles, compact ones and fractal aggregates composed of homogeneous spheres. For the compact particles we consider Gaussian random spheres with various degrees of non-sphericity. For the fractal aggregates we compute the absorption spectra for various fractal dimensions. The 10 micron spectra are computed for ensembles of these particles in random orientation using the well-known Discrete Dipole Approximation. We compare our results to spectra obtained when using volume equivalent homogeneous spheres and to those computed using a porous sphere approximation. We conclude that, in general, nonspherical particles show a spectral signature that is similar to that of homogeneous spheres with a smaller material volume. This effect is overestimated when approximating the particles by porous spheres with the same volume filling fraction. For aggregates with fractal dimensions typically predicted for cosmic dust, we show that the spectral signature characteristic of very small homogeneous spheres (with a volume equivalent radius r_V<0.5 micron) can be detected even in very large particles. We conclude that particle sizes are underestimated when using homogeneous spheres to model the emission spectra of astronomical sources. In contrast, the particle sizes are severely overestimated when using equivalent porous spheres to fit observations of 10 micron silicate emission.Comment: Accepted for publication in A&
    corecore