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Abstract. In this paper, we define a q-deformation of the Dirac operator
as a generalization of the one dimensional q-derivative. This is done in
the abstract setting of radial algebra. This leads to a q-Dirac operator
in Clifford analysis. The q-integration on Rm, for which the q-Dirac
operator satisfies Stokes’ formula, is defined. The orthogonal q-Clifford-
Hermite polynomials for this integration are briefly studied.
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1. Introduction

In [13] Jackson originally introduced the q-analogues of differentiation, inte-
gration and special functions in the context of q-hypergeometric series (also
known as basic hypergeometric series). An overview of the theory of q-calculus
can be found in [9, 10]. In this paper we aim to define a q-deformation of the
Dirac operator, which implies a q-deformation of partial derivatives in higher
dimensions. Generalizations of the q-derivative to higher dimensions have also
been developed in the theory of quantum spaces, see e.g. [2].

In [4] another approach to develop a q-Dirac operator was taken. In the
present paper the behavior of the q-Dirac operator with respect to vectors
plays a central role. It is therefore logical to define the q-Dirac operator in
setting of radial algebra, see [15]. The q-Dirac operator on radial algebra is
defined by a list of axioms based on q-calculus and Clifford analysis. It is
then proven that this list of axioms uniquely defines a q-Dirac operator.

The q-Dirac operator on radial algebra leads to a q-Dirac operator in
specific realizations of radial algebra, such as Clifford analysis or super Clif-
ford analysis, see e.g. [6]. The expression for the q-Dirac operator in Clifford
analysis shows that the deformation is in fact purely radial. An alternative
theory of radial deformations of the Dirac operator is presented in [5]. For
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completeness we also derive the list of axioms that uniquely define the q-
Dirac operator in Clifford analysis. Although the resulting q-Dirac operator
differs from the one obtained in [4] the integration as defined in [4] also leads
to Stokes’ formula for the q-Dirac operator in the present paper.

Since the integration corresponds to the one in [4], the theory of orthog-
onal polynomials also coincides. Although the q-Dirac operator in the current
paper is introduced more naturally, it seems that the theory of q-orthogonal
polynomials in Clifford analysis is more elegantly described using the q-Dirac
operator developed in [4].

This paper is organized as follows. First we recall the basic notions of
q-calculus, Clifford analysis and radial algebra. The q-Dirac operator on ra-
dial algebra is defined by a list of axioms. Explicit calculations show that
the axioms uniquely define the action of the q-Dirac operator on elements
of the radial algebra of low degree. The applied techniques are then used to
prove the unicity of the q-Dirac operator. Then it is proven that the list of
axioms is not inconsistent and therefore uniquely defines a q-Dirac opera-
tor. This implies the definition of the q-Dirac operator in Clifford analysis.
The action on terms of the Fischer decomposition is calculated and the unic-
ity of the q-Dirac operator in Clifford analysis is proven. It turns out that
the notion of q-monogenic polynomials and monogenic polynomials coincide,
which implies that the deformation is purely radial. Then the q-integration
on Rm is defined as q-deformed radial integration combined with undeformed
spherical integration. It is proven that the q-Dirac operator satisfies Stokes’
formula. Then it is argued that the q-Dirac operator as developed in [4] is
better suited to study orthogonal polynomials. Finally in the conclusion the
results are reviewed and a comparison is made between the q-Dirac operator
in the current paper and the one in [4].

2. Preliminaries

First we give a short introduction to q-calculus, see e.g. [9, 10, 13]. We define
for u a number or operator, and the deformation parameter q,

[u]q =
qu − 1
q − 1

.

It’s clear that limq→1[u]q = u. In this paper we always assume 0 < q < 1.
The q-derivative of a function f(t) is given by the expression

Dq
t (f(t)) =

f(qt)− f(t)
(q − 1)t

,

which implies

Dq
t (t

k) =
qk − 1
q − 1

tk−1 = [k]qtk−1 (1)

and

Dq
t t = qtDq

t + 1. (2)
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The q-derivative satisfies the Leibniz rule

Dq
t (f1(t)f2(t)) = Dq

t (f1(t))f2(t) + f1(qt)Dq
t (f2(t)). (3)

The q-integration or Jackson integration on an interval [0, a] with a ∈ R
is given by ∫ a

0

f(t) dqt = (1− q)a
∞∑
k=0

f(aqk)qk. (4)

The infinite q-integration is given by∫ a·∞

0

f(t) dqt = (1− q)a
∞∑

k=−∞

f(aqk)qk, (5)

for a ∈ R, see [11]. The infinite integration is therefore a function of a.
However it is a q-constant, Dq

a

∫ a·∞
0

= 0. More general intervals are defined
by
∫ b
a

=
∫ b
0
−
∫ a
0

, and satisfy the important property∫ b

a

Dq
t f(t) dqt = f(b)− f(a). (6)

There also exists an extensive theory of q-polynomials and -special func-
tions, see e.g. [9, 12]. For a general α > −1 we define the q-Laguerre polyno-
mials, see e.g. [12, 14] as

Lαt (u|q2) =
t∑
i=0

q(t−i)(t−i+1) (−u)i

[t− i]q2 ![i]q2 !
Γq2(t+ α+ 1)
Γq2(i+ α+ 1)

,

with the q-factorial given by [k]q! = [k]q[k−1]q · · · [1]q and the q-Gamma func-
tion Γq which satisfies Γq(u+1) = uΓq(u). We also introduce a q-exponential
by

eq2(u) =
∞∑
j=0

qj(j−1)uj

[j]q2 !
.

Now we briefly recall the basic notions of Clifford analysis. For more
details we refer the reader to [1, 8]. The complex Clifford algebra Cm is
generated by an orthonormal basis (e1, · · · , em) for Rm with multiplication
rules

eiej + ejei = −2δij for 1 ≤ i, j ≤ m. (7)

The algebra generated by these Clifford numbers and the m variables xj ,
which commute with the ei, is the algebra of Clifford-valued polynomials
P = R[x1, · · · , xm] ⊗ Cm. The vector variable x on Rm can be identified
with the first order Clifford polynomial of the form x =

∑m
j=1 ejxj . The

multiplication rules (7) imply that the square of this vector variable is scalar
valued,

x2 = −
m∑
j=1

x2
j = −r2.
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The corresponding Dirac operator or vector derivative in the vector
variable x is the operator

∂x = −
m∑
j=1

ej∂xj
.

The square of the Dirac operator is again scalar and is the Laplace operator.
Clifford analysis deals with the function theory of solutions of the equation
∂xf(x) = 0, called monogenic functions. In particular we study monogenic
polynomials of degree k. Denote by E =

∑m
j=1 xj∂xj

the Euler operator.

Definition 1. An element F ∈ P is a spherical monogenic of degree k if it
satisfies ∂xF = 0 and EF = kF , i.e. F ∈ Pk. Moreover the space of all
spherical monogenics of degree k is denoted by Mk.

The space of Clifford algebra-valued polynomials can be decomposed as
follows.

Lemma 1 (Fischer decomposition). The space Pk decomposes as

Pk =
k⊕
i=0

xiMk−i.

This decompositions is unique, so
∑
i x

iMk−i = 0 (with Mk−i ∈ Mk−i)
implies Mk−i = 0 for every i.

The role of the special orthogonal group SO(m) in harmonic analysis is
taken over by the spin group Spin(m) in Clifford analysis,

Spin(m) = {s ∈ Cm| ∃k ∈ N, s = ω1 · · ·ω2k, ωi ∈ Sm−1, i = 1, · · · , 2k}.
A real vector ω in the Clifford algebra belongs to unit sphere Sm−1 if ω2 = −1.
The spin group is a double cover of the special orthogonal group. The L-
representation of the spin group on Clifford algebra-valued functions is given
by

L(s)[f(x)] = sf(s−1xs).

The Dirac operator is is spin-invariant,[
∂x, L(s)

]
= 0. (8)

We will also need the main anti-involution · on the Clifford algebra Cm,
defined by
• · is equal to the complex conjugation on scalars,
• ei = −ei,
• ab = ba for all a, b ∈ Cm.

Using the Clifford algebra multiplication rules (7) yields

{x, ∂x} = ∂xx+ x∂x = 2E +m. (9)

In particular the relations ∂x(x) = m and

∂xx
2 = x2∂x + 2x (10)
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hold.
The relation {x, ej} = −2xj implies that {x, z} is scalar valued for a

general vector z ∈ Rm identified with z =
∑m
j=1 ejzj ∈ Cm.

This leads us to radial algebra, see [15]. The starting object in the
definition of radial algebra is a set S of ‘abstract vector variables’. In this
paper we will always assume an infinite set S. The radial algebra R(S) is the
universal algabra generated by S and subject to the constraints

[{x, y}, z] = 0 for any x, y, z ∈ S. (11)

The subset of R(S) which commutes with all the elements of R(S) is
called the set of scalars, and denoted by R0(S). The formal inner product of
two elements of the radial algebra is given by

〈u, v〉 =
1
2
{u, v}

and is an element of R0(S), by (11). In [15] it was proven that R0(S) is gen-
erated by the formal inner products. The space R1(S) is defined as the space
of R0(S)-linear combinations of elements of S. Clifford analysis is obtained
again when we take the set S = {x, e1, · · · , em}, therefore only viewing the
‘prefered vector’ x as a variable. Since this set S is finite, not all results from
radial algebra will be immediately applicable to Clifford analysis.

We can construct a vector derivative (Dirac operator) with respect to
each element of S. Mostly we will choose x. This means that all the other
operators, such as the Euler operator, are defined with respect to x. So we
will always use the notation E in stead of Ex. The subspace of the radial
algebra R(S) which is of degree k with respect to x is denoted by [R(S)]k.

In order to define the vector derivative ∂x ∈ End(R(S)) , there has to
be a unique constant scalar m for which

(A0) ∂x(x) = m, ∀x ∈ S.

On the level of radial algebra this m is a parameter wich can take any value
in R. The Dirac operator is defined uniquely by this axiom and by

(A1) ∂x(fF ) = ∂x(f)F + f∂x(F ), f ∈ R0(S) , F ∈ R(S)
(A2) ∂x(FG) = ∂x(F )G, F ∈ R(S) , G ∈ R(S\{x})
(A3) ∂x(x2) = 2x
(A4) ∂x(〈x, z〉) = z , z 6= x.

An important result of radial algebra is that it allows to develop a
theory of super Clifford analysis, see e.g. [6]. Using p commuting variables
and 2n anti-commuting variables we obtain a model for radial algebra with
(super-)dimension M = p − 2n. So here the dimension of the radial algebra
is an element of Z. In [7] it was proven that there is a Fischer decomposition
(lemma 1) in superspace if M 6∈ −2N.
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3. The q-Dirac operator on radial algebra

3.1. Definition

Our aim is to define a q-deformed vector derivative on the level of radial
algebra. Property (2) implies that the following relation holds for the one
dimensional q-derivative:

Dq
t t

2 = q2t2Dq
t + (q + 1)t.

Comparing this with property (10) we find that the q-Dirac operator
should satisfy ∂qxx

2 = q2x2∂qx + (q + 1)x. Formula (1) implies Dq
t (t) = [1]q.

Therefore we also impose ∂qx(x) = [m]q for some parameter m ∈ R and
∂qx(〈z, x〉) = [m]q

m z. We also assume ∂qx to be vector valued, i.e. ∂qx acting
on R0(S) should be inside R1(S) and ∂v〈v, ∂qx〉 = ∂qx on R(S\{v}) with
2〈v, ∂qx〉 = {v, ∂qx}. In undeformed radial algebra the anticommutator of x
and ∂x commute with other vectors, see equation (9). It is logical to extend
this property to the q-anticommutator of x and ∂qx. Thus we are led to the
following axioms for ∂qx ∈ End(R(S)),

(B0) ∂qx(x) = [m]q
(B1) ∂qx(f) ∈ R1(S), f ∈ R0(S) and ∂v〈v, ∂qx〉 = ∂qx on R(S\{v})
(B2) ∂qx(FG) = ∂qx(F )G F ∈ R(S) , G ∈ R(S\{x})
(B3) ∂qxx

2 = q2x2∂qx + (q + 1)x

(B4) ∂qx(〈x, z〉) =
[m]q
m

z ∀ z 6= x

(B5) [(∂qxx+ qx∂qx), z] = 0 ∀ z 6= x

(B6) lim
z→u

∂qxF (z) = ∂qxF (u) , z 6= x 6= u

(B7) E∂qx = ∂qx(E− 1) and Eu∂qx = ∂qxEu, u 6= x.

Remark 1. It would seem logical to demand the relation ∂qx〈x, z〉 = q〈x, z〉∂qx+
z as an axiom. However, this leads to a contradiction with axiom (B6) when
we evaluate ∂qx(〈x, z〉〈x, v〉).

3.2. Unicity

Now we prove some properties of an operator which satisfies axioms (B0)−
(B7). This will lead to a proof of the unicity of the q-Dirac operator. The
q-deformation of the Euler operator is given by

E = [E]q =
qE − 1
q − 1

and satisfies
Ex− qxE = x and Ez = zE. (12)

Lemma 2. An operator ∂qx ∈ End(R(S)) satisfying axioms (B0), (B3) and
(B5) also satisfies the following q-deformed version of formula (9):

∂qxx+ qx∂qx = [m]q + (qm + q)E = [m+ E]q + q[E]q. (13)
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Proof. The combination of axioms (B2) and (B7) imply ∂qx(1) = 0. We define
the operator A on R(S) as

A = ∂qxx+ qx∂qx − [m]q − (qm + q)E.

Axiom (B0) and the relation ∂qx(1) = 0 imply A(1) = 0. Using the definition
of A and equation (12) we calculate

∂qxx
2 = (A− qx∂qx + [m]q + (qm + q)E)x

= (A+ [m]q + (qm + q)E)x− qx (A− qx∂qx + [m]q + (qm + q)E)

= Ax− qxA+ q2x2∂qx + [m]q(1− q)x+ (qm + q)(Ex− qxE)

= Ax− qxA+ q2x2∂qx + (q + 1)x.

Comparing this with axiom (B3) yields Ax = qxA. Using axiom (B5) and
equation (12) we also find Az = zA ∀z 6= x, so A = 0 as an operator on
R(S). �

We will also need the following calculation.

Lemma 3. An operator ∂qx ∈ End(R(S)) satisfying axiom (B5) also satisfies

∂qx〈x, z〉 − q〈x, z〉∂qx = 〈z, ∂qx〉x− qx〈z, ∂qx〉.

Proof. We calculate, using (B5)

2∂qx〈x, z〉+ 2qx〈z, ∂qx〉 = ∂qxxz + qx∂qxz + ∂qxzx+ qxz∂qx

= z∂qxx+ zqx∂qx + ∂qxzx+ qxz∂qx

= 2〈z, ∂qx〉x+ 2q〈x, z〉∂qx,

which gives the desired result. �

Now we calculate some explicit evaluations of the Dirac operator. Be-
cause of lemma 3 and axiom (B4) we find

〈z, ∂qx〉(x) =
[m]q
m

z and 〈z, ∂qx〉(〈x, u〉) =
[m]q
m
〈z, u〉.

Therefore all the first order evaluations are completely determined from ax-
ioms (B0) − (B7). Now we consider second order evaluations. Axiom (B3)
implies

∂qx(x2) = (q + 1)x (14)

and 〈z, ∂qx〉(x2) = (q + 1)〈x, z〉. Equation (13) combined with axiom (B4)
yields

∂qx(x〈x, z〉) = −qx [m]q
m

z + ([m+ 1]q + q)〈x, z〉. (15)

In order to find the other second order evaluations, we use a technique that
will be generalized in the proof of theorem 1.
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Lemma 4. Consider z, u ∈ S, different from x. For an operator ∂qx ∈ End(R(S))
satisfying axioms (B0)− (B7), the following relations hold:

∂qx(〈x, z〉〈x, u〉) =
[m+ 1]q + q

m+ 2
(u〈x, z〉+ z〈x, u〉) +

1 + q − 2q[m]q/m
m+ 2

x〈u, z〉

and

〈z, ∂qx〉(x〈x, u〉) =
[m+ 1]q + q

m+ 2
(x〈u, z〉+ z〈x, u〉) +

1 + q − 2q[m]q/m
m+ 2

u〈x, z〉.

Proof. We start by using lemma 3 on ∂qx(〈x, u〉〈x, z〉),

∂qx(〈x, z〉〈x, u〉) = q
[m]q
m
〈x, z〉u+ 〈z, ∂qx〉(x〈x, u〉)− q

[m]q
m

x〈z, u〉. (16)

So it suffices to calculate ∂qx(〈x, z〉〈x, u〉). Axioms (B7) and (B1) imply that
there must be coefficients α, γ and β such that

∂qx(〈x, z〉〈x, u〉) = αz〈x, u〉+ γu〈x, z〉+ βx〈z, u〉

holds. The symmetry between z and u (axiom (B6)) implies α = γ. Consider
v ∈ S and different from x, u, z, the calculation above implies

〈v, ∂qx〉(〈x, z〉〈x, u〉) = α(〈v, z〉〈x, u〉+ 〈v, u〉〈x, z〉) + β〈v, x〉〈z, u〉 and
〈v, ∂qx〉(x〈x, u〉) = α(v〈x, u〉+ 〈v, u〉x) + β〈v, x〉u.

Axiom (B1) then implies

∂qxx〈x, u〉 = ∂v〈v, ∂qx〉x〈x, u〉
= α(m〈x, u〉+ ux) + βxu.

Comparing this with formula (15), yields α = [m+1]q+q
m+2 and β = 1+q−2q[m]q/m

m+2 .
�

This lemma and the calculation before imply that the operator ∂qx is
uniquely determined by axioms (B0)− (B7) on the space [R(S)]0⊕ [R(S)]1⊕
[R(S)]2. By generalizing the used techniques we can prove the unicity on
R(S). First the symmetry is used in the following lemma to limit the possible
expressions for ∂qx acting on elements of R(S). We use the convention that
the notation 〈x, ui〉〈x, ui+1〉 · · · 〈x, uk〉 is considered to be 1 if k < i and
introduce some notations. For ui elements of S and Sj−1 the permutation
group on {1, 2, · · · , j − 1}, define the element of R0(S) given by

Λji (u1, · · · , uj−1)

=
∑

σ∈Sj−1

〈uσ(1), uσ(2)〉 · · · 〈uσ(2i−1), uσ(2i)〉〈x, uσ(2i+1)〉 · · · 〈x, uσ(j−1)〉

and the element of R1(S) given by

Πj
i (u1, · · · , uj−1)

=
∑

σ∈Sj−1

uσ(1)〈uσ(2), uσ(3)〉 · · · 〈uσ(2i), uσ(2i+1)〉〈x, uσ(2i+2)〉 · · · 〈x, uσ(j−1)〉.
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The following properties of Λ and Π are straightforward to obtain

Πj
i x = 2Λji − xΠj

i (17)

and

Λji (u1, · · · , uj−1) =
∑

σ∈Sj−1

uσ(1)uσ(2)〈uσ(3), uσ(4)〉 · · · (18)

· · · 〈uσ(2i−1), uσ(2i)〉〈x, uσ(2i+1)〉 · · · 〈x, uσ(j−1)〉.

Lemma 5. With x, v, u1, u2, · · · , uj all different from each other and ∂qx an
operator satisfying axioms (B0)− (B7), the expression

〈v, ∂qx〉 (〈x, u1〉〈x, u2〉 · · · 〈x, uj〉)

has to be of the following form

b j−1
2 c∑
i=0

αix
2i〈v,Πj+1

i (u1, · · · , uj)〉+
b j−2

2 c∑
i=0

βix
2i〈v, x〉Λj+1

i+1 (u1, · · · , uj)

for some constants {αi} and {βi}.

Proof. The fact that every term is accompanied by permutations of the ul
is immediately clear from the fact that u1, · · ·uj all have the same indis-
tinguishable role, as implied by axiom (B6). Axioms (B1) and (B7) imply
that

〈v, ∂qx〉 (〈x, u1〉〈x, u2〉 · · · 〈x, uj〉)
is an element of R0(S) of degree j − 1 in x and of degree 1 in v and ul for
1 ≤ l ≤ j.

First we consider all the possible terms without an x2, these correspond
to i = 0 in the summation above. So we need to make inner products of x
with j − 1 of the v, u1, · · · , uj . Besides these inner products with x, there
either has to be an inner product 〈v, uλ〉 or an inner product of the form
〈uλ, uρ〉. For the first option to be possible, j ≥ 1 has to hold. For the second
option to be possible, j ≥ 2 has to hold. These are the two possibilities that
correspond to α0 and β0. A completely similar reasoning leads to the terms
with i ≥ 1. �

Now lemma 4 can be generalized to arbitrary degrees.

Theorem 1. For an operator ∂qx ∈ End(R(S)) satisfying axioms (B0)− (B7),
the expression

∂qx〈x, u1〉〈x, u2〉 · · · 〈x, uj〉

with all the ui different from each other and from x, is completely determined
for j ∈ N.

Proof. This expression is determined for j = 1, by axiom (B4). Now, define

Fj(u1, u2, · · · , uj) = ∂qx〈x, u1〉〈x, u2〉 · · · 〈x, uj〉.
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Lemma 5 shows which form 〈v, Fj〉 takes. This implies that

Fj(u1, u2, · · · , uj)

=
b j−1

2 c∑
i=0

αjix
2iΠj+1

i (u1, · · · , uj) +
b j−2

2 c∑
i=0

βji x
2i+1Λj+1

i+1 (u1, · · · , uj)

for some coefficients α and β. Now we will prove that the coefficients {αji , i ≤
b j−1

2 c} and {βji , i ≤ b
j−2
2 c} are determined in terms of the coefficients

{αj−1
i , i ≤ b j−2

2 c} and {βj−1
i , i ≤ b j−3

2 c}. This proves by induction that
the coefficients are determined, since they are known for j = 1.

Define Gj(u1, u2, · · · , uj−1) by 〈Gj , uj〉 = 〈v, Fj〉, which is equivalent
with

Gj = 〈v, ∂qx〉〈x, u1〉 · · · 〈x, uj−1〉x. (19)

From the expression of 〈v, Fj〉 we can calculate Gj ,

Gj(u1, u2, · · · , uj−1) =
b j−1

2 c∑
i=0

αjix
2ivΛji (u1, · · · , uj−1)

+
b j−1

2 c∑
i=0

αjix
2i2i[

∑
σ∈Sj−1

〈v, uσ(1)〉uσ(2)〈uσ(3), uσ(4)〉 · · ·

· · · 〈uσ(2i−1), uσ(2i)〉〈x, uσ(2i+1)〉 · · · 〈x, uσ(j−1)〉]

+
b j−1

2 c∑
i=0

αjix
2i+1(j − 2i− 1)〈v,Πj

i (u1, · · · , uj−1)〉

+
b j−2

2 c∑
i=0

βji x
2i(2i+ 2)〈v, x〉Πj

i (u1, · · · , uj−1)

+
b j−2

2 c∑
i=0

βji x
2i+1(j − 2i− 2)〈v, x〉Λji+1(u1, · · · , uj−1).

This allows to calculate ∂vGj using equations (17) and (18),

∂vGj(u1, u2, · · · , uj−1) =
b j−1

2 c∑
i=0

αjix
2i(m+ 2i)Λji (u1, · · · , uj−1)

+
b j−1

2 c∑
i=0

αjix
2i(j − 2i− 1)

[
2Λji (u1, · · · , uj−1)− xΠj

i (u1, · · · , uj−1)
]
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+
b j−2

2 c∑
i=0

βji x
2i+1(2i+ 2)Πj

i (u1, · · · , uj−1)

+
b j−2

2 c∑
i=0

βji x
2i+2(j − 2i− 2)Λji+1(u1, · · · , uj−1).

By combining terms and taking into account zero terms we obtain

∂vGj(u1, u2, · · · , uj−1)

= (m+ 2j − 2)αj0(j − 1)!〈x, u1〉 · · · 〈x, uj−1〉

+
b j−1

2 c∑
i=1

[(m+ 2j − 2i− 2)αji + (j − 2i)βji−1]x2iΛji (u1, · · · , uj−1)

+
b j−2

2 c∑
i=0

[(2i+ 2)βji − (j − 2i− 1)αji ]x
2i+1Πj

i (u1, · · · , uj−1).

The expression ∂vGj can also be calculated starting from equation (19),
using axiom (B1), the expression of Fj−1 in terms of Λ and Π and lemma 2,

∂vGj

= ∂qxx〈x, u1〉 · · · 〈x, uj−1〉
= ([m+ j − 1]q + q[j − 1]q) 〈x, u1〉 · · · 〈x, uj−1〉

−
b j−2

2 c∑
i=0

qαj−1
i x2i+1Πj

i (u1, · · · , uj−1)−
b j−3

2 c∑
i=0

qβj−1
i x2i+2Λji+1(u1, · · · , uj−1)

Comparing coefficients yields

αj0 =
[m+ j − 1]q + q[j − 1]q

(m+ 2j − 2)(j − 1)!
,[

(m+ 2j − 2i− 2)αji + (j − 2i)βji−1

]
= −qβj−1

i−1 and[
(2i+ 2)βji − (j − 2i− 1)αji

]
= −qαj−1

i .

Assuming that the coefficients for j− 1 are known, this can clearly be solved
by using the third equation to calculate βj0, then the second to calculate αj1
and so forth. The solution will always be unique. However it will only exist
if m 6∈ −2N. �

Now we can prove the unicity of the q-Dirac operator if the parameter
m is not even and negative. If m ∈ −2N the axioms are not consistent as can
be seen from the proof of theorem 1.

Theorem 2. There can only be one q-Dirac operator ∂qx ∈ End(R(S)) satis-
fying axioms (B0)− (B7).
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Proof. We need to prove that ∂qx acting on all elements of R(S) is determined
from axioms (B0)− (B7). The radial algebra R(S) is additively generated by
elements of the form

xk〈x, u1〉〈x, u2〉 · · · 〈x, uj〉y1 · · · yl,

with k ∈ N, ui, yi ∈ S and different from x. Because of axiom (B6) we
can consider all the ui to be different from each other. Lemma 2 and axiom
(B2) imply that the q-Dirac operator acting on such elements of R(S) is
determined if the q-Dirac operator on 〈x, u1〉〈x, u2〉 · · · 〈x, uj〉 is determined.
Theorem 1 therefore proves this theorem. �

It should still be proven that the axioms (B0)− (B7) are in general not
inconsistent, this will be done in section 3.3 by explicit construcion of ∂qx if
m 6∈ −2N.

Remark 2. The calculations in theorem 1 imply that there cannot be a q-
deformed Dirac operator in models of radial algebra for super Clifford anal-
ysis if the superdimension M = p − 2n (with p bosonic and n fermionic
variables) is even and negative. This corresponds to the case without Fischer
decomposition, see [7].

We call an element P of the radial algebra q-monogenic if it satisfies
∂qxP = 0. Here we will find that a certain type of second degree polyno-
mial is q-monogenic if it is monogenic. In section 3.3 we will find that every
monogenic polynomial is q-monogenic.

Lemma 6. If the element of the radial algebra,

〈x, z〉2 + a〈x, z〉xz + bx2z2

with a, b ∈ R is monogenic, it is also q-monogenic if m 6∈ −2N.

Proof. Using the calculations in equations (14) and (15) and in lemma 4 we
find

∂qx(〈x, z〉2 + a〈x, z〉xz + bx2z2)

= (
[m+ 1]q + q

m+ 2
)2z〈x, z〉+

1 + q − 2q[m]q/m
m+ 2

xz2

+ a([m+ 1]q + q)〈x, z〉z − aq [m]q
m

xz2 + b(q + 1)xz2.

Therefore it is q-monogenic if a = −2
m+2 and b = −1

m+2 . This is independent
from q and therefore the polynomial is q-monogenic if it is monogenic. �

In case the parameter m satisfies [m+ 1]q + q = 0 (which requires m to
be negative) the element of R(S) above is q-monogenic for all (a, b) such that
1+a+mb = 0 holds. So for specific values of q and m the space of q-monogenic
elements of R(S) can include elements which are not monogenic.
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3.3. Existence

We give an explicit expression for ∂qx in case m 6∈ −2N in terms of the classical
vector derivative ∂x defined by axioms (A0)−(A4). In this way we prove that
the set of axioms (B0) − (B7) is consistent, and complete the unicity and
existence of an operator defined by (B0)− (B7). This explicit expression for
∂qx in terms of ∂x also leads to a definition for the q-deformed Dirac operator
in (super) Clifford analysis.

Theorem 3. If m 6∈ −2N there is exactly one operator ∂qx in End(R(S)) which
satisfies axioms (B0)− (B7). The operator is given by

∂qx =
∞∑
j=0

xjfj(E)∂j+1
x ,

with, for j ∈ N, the functions fj : N→ R defined by f0(u) = [m+u]q+q[u]q
m+2u and

f2j+1(u) =
1

2j + 2
[f2j(u+ 1)− qf2j(u)] and

f2j+2(u) = − 1
2u+ 2j +m+ 2

[f2j+1(u+ 1) + qf2j+1(u)] .

Proof. The operator fj(E) is defined as the diagonal operator on R(S) which
has the same eigenvectors as E but with eigenvalues k ∈ N replaced by fj(k).
Since each element of R(S) is of finite maximal degree in x, the expression
above for ∂qx is an element of End(R(S)).

Because of the unicity of an operator which satisfies axioms (B0)−(B7),
we only have to check that the proposed form of ∂qx satisfies the axioms.
Axioms (B0) and (B4) hold since f0(0) = [m]q/m. Because x and ∂x are
vector valued operators axiom (B1) holds. Axioms (B2), (B6) and (B7)
trivially hold. Now we will prove that equation (13) holds, from which (B3)
and (B5) follow. Substituting the proposed expression for ∂qx and using the
formulas {∂2j+1

x , x} = ∂2j
x (2E +m) and [∂2j

x , x] = 2j∂2j−1
x yields

∂qxx+ qx∂qx = −
∞∑
j=0

x2j+1f2j(E + 1)∂2j+1
x +

∞∑
j=0

x2jf2j(E)(2E +m+ 2j)∂2j
x

+
∞∑
j=0

x2j+2f2j+1(E + 1)∂2j+2
x +

∞∑
j=0

x2j+1(2j + 2)f2j+1(E)∂2j+1
x

+
∞∑
j=0

x2j+1qf2j(E)∂2j+1
x +

∞∑
j=0

x2j+2qf2j+1(E)∂2j+2
x

= f0(E)(2E +m) = [m+ E]q + q[E]q,

which proves the theorem. �

Remark 3. The explicit expression in theorem 3 implies that lemma 6 can be
generalized immediately. Every monogenic polynomial is q-monogenic. The
other direction is not true, a polynomial can be q-monogenic for specific values
of m and q without being monogenic.
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Example 1. As an easy example we can calculate the expression for ∂qx acting
on elements of R(S) of degree 2 in x,

∂qx|[R(S)]2 =
[m+ 1]q + q

m+ 2
∂x +

1
2

1 + q − 2q[m]q/m
m+ 2

x∂2
x.

From this we immediately re-obtain the expressions in lemma 4.

4. The q-Dirac operator in Clifford analysis

The expression for the q-Dirac operator in terms of ∂x in theorem 3 allows
to construct it for specific models of radial algebra. For Clifford analysis on
Rm, the q-Dirac operator on P = R[x1, · · · , xm]⊗Cm is therefore defined as

∂qx =
∞∑
j=0

xjfj(E)∂j+1
x , (20)

with fj the functions in theorem 3. Although this expression is not very trans-
parent, the action on terms of the Fischer decomposition can be calculated
easily. This operator can also be determined uniquely by a list of axioms,
closely related to the B-axioms. The only essential change is axiom (B6),
which does not have the same implications in Clifford analysis, since the set
S is finite for Clifford analysis. Therefore it is replaced by the condition of
Spin(m)-invariance.

4.1. The q-Dirac operator and the Fischer decompostion

It is straightforward to check that the Dirac operator in Clifford analysis (20)
still satisfies the relation

∂qxx+ qx∂qx = [m+ E]q + q[E]q, (21)

which also implies ∂qxx
2 = q2x2∂qx + (q+ 1)x. The q-deformed Euler operator

also satisfies [E]q = rDq
r . In Clifford analysis (with dimension m > 0) we can

prove that a polynomial is monogenic if and only if it is q-monogenic (with q
an arbitrary fixed constant satisfying 0 < q < 1), see the discussion in remark
3.

Theorem 4. Given Mk ∈ Mk a spherical monogenic of degree k, then the
following relations holds:

∂qxx
2lMk = [2l]qx2l−1Mk l ∈ N,

∂qxx
2l+1Mk =

(
[2l + k +m]q + q2l+1[k]q

)
x2lMk l ∈ N.

Given Pk ∈ Pk a polynomial of degree k, ∂qxPk = 0 holds if and only if
Pk ∈Mk.
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Proof. The expression (20) immediately implies that ∂qxMk = 0 if Mk ∈Mk.
Applying the commutation relation (21) yields

∂qxx
2lMk = (q2lx2l∂qx +

q2l − 1
q − 1

x2l−1)Mk

= [2l]qx2l−1Mk

and

∂qxx
2l+1Mk =

[
q2lx2l∂qxx+

q2l − 1
q − 1

x2l

]
Mk

=
[
q2lx2l([m+ k]q + q[k]q) + [2l]q

]
x2lMk

= ([2l +m+ k]q + q2l+1[k]q)x2lMk,

which completes the proof of the first part of the theorem.
The obtained relations can be summarized as ∂qxx

lMk = cl,kx
l−1Mk for

l > 0. The coefficients ck,l are strictly positive since m > 0, l > 0 and k ≥ 0.
Consider a fixed polynomial Pk ∈ Pk with Fischer decomposition (lemma 1)

Pk =
k∑
j=0

xjMk−j ⇒ ∂qxPk =
k∑
j=1

cj,k−jx
j−1Mk−j .

The unicity of the Fischer decomposition then implies that if Pk satisfies
∂qxPk = 0, then Mj = 0 must hold for j < k and therefore Pk = Mk holds.
This completes the proof. �

The fact that the space of spherical q-monogenics is independent of q,
shows that the only real q-deformation is radial. This is closely related to the
fact that the q-deformed Dirac operator is invariant under the spin group as
will be proven in the following section, and not under a q-deformed version
of the spin group.

The action of the q-Dirac operator can be extended to general radial
functions, not necessarily in P. When f is a scalar function, axiom (B3) can
be extended to

∂qxf(x2) = −x
r

(
Dq
rf(x2)

)
+ f(q2x2)∂qx. (22)

The space of all scalar radial functions for which the expression above exists
is denoted by J .

4.2. Unicity of the q-Dirac operator on Clifford analysis

Theorem 5. The Dirac operator ∂qx on P = R[x1, · · · ,m] ⊗ Cm in formula
(20) is uniquely determined by the following list of properties:

(C0) ∂qx(x) = [m]q

(C3) ∂qxx
2 = q2x2∂qx + (q + 1)x

(C5) (∂qxx+ qx∂qx) is a scalar operator

(C6) ∂qx is Spin(m)-invariant

(C7) E∂qx = ∂qx(E− 1).
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Proof. First, it can be checked that the q-Dirac operator in equation (20)
satisfies these properties. Properties (C0) and (C7) are trivial. Properties
(C3) and (C5) follow from equation (21). Property (C6) holds since x, ∂x
and E are Spin(m)-invariant.

In the exact same way as in the proof of lemma 2 properties (C0), (C3)
and (C5) imply that equation (21) must hold. The action on a polynomial of
the form xlMk with Mk ∈Mk is therefore uniquely determined when ∂qxMk

is determined.
Axiom (C7) implies that the image of ∂qx acting on the space Mk is

a subspace of Pk−1. As a Spin(m)-representation Mk decomposes into irre-
ducible pieces as (for simplicity we consider the case m = 2n+ 1)

Mk =
2n⊕
i=0

Mi
k.

Each Mi
k is an irreducible highest weight representation for Spin(m), with

highest weight (k + 1
2 ,

1
2 , · · · ,

1
2 ), where the term 1

2 is repeated n − 1 times.
This essentially follows from the decomposition of Cm into its spinor spaces.
The decomposition of the space Pk−1 in lemma 1,

Pk−1 =
k−1⊕
j=0

xjMk−1−j

implies that there does not appear a Spin(m)-representation of highest weight
(k+ 1

2 ,
1
2 , · · · ,

1
2 ) in Pk−1. Since the q-Dirac operator is Spin(m)-invariant and

the image of ∂qx acting on the spaceMk is inside Pk−1, we find that ∂qx must
be zero on Mk. The case m = 2n is completely equivalent.

Summarizing, the axioms imply that ∂qxx
lMk is given by the expressions

in theorem 4 which implies that ∂qx is uniquely determined and corresponds
to the expression in equation (20). �

5. q-integration

Since the deformation is purely radial, it is logical to define integration as
a combination of q-deformed (Jackson) radial integration with undeformed
spherical integration,

∫
Sm−1 dσ, as was also done in [4]. The spherical integra-

tion satisfies
∫

Sm−1 dσxMk = 0 for k ∈ N and
∫

Sm−1 dσMk = 0 for k > 0. We
define integration for functions of the form P ⊗ J with J the scalar radial
functions such that the q-Dirac operator is defined on them.

Definition 2. The q-integration on P ⊗ J is defined as∫
Bm(λ)

f(x)dqV (x) =
∫ λ

0

dqrr
m−1

∫
Sm−1

dσf(x),

with the one dimensional q-integration as defined in equation (4) for λ ∈ R+

or equation (5) for λ = a · ∞ with a ∈ R+.
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The vector ξ will be used for the normalized vector variable, ξ = x/r.
The integration over the boundary of Bm(λ), the ball with radius λ in Rm,
is denoted by

∫
∂Bm(λ)

dσ and satisfies∫
∂Bm(λ)

dσf(x) = λm−1

∫
Sm−1

dσf(λξ).

Now we prove that Stokes’ theorem holds for this q-integration and the
q-Dirac operator.

Theorem 6. For f ∈ P ⊗ J and the integration in defintion 2, the following
relations hold,∫

Bm(λ)

(∂qxf)dqV (x) = −
∫
∂Bm(λ)

dσ ξf(x) if λ ∈ R+

= 0 if λ = a · ∞, a ∈ R+

and lim
k→∞

∫
∂Bm(q−ka)

dσξf = 0.

Proof. The space P ⊗ J is generated by functions of the form Mkg(x2) and
xMkg(x2) with Mk ∈ Mk and g(x2) a scalar valued radial function. It is
immediately clear that both the left-hand and right-hand side of the proposed
equations are zero unless k = 0. The first possibility we must check is therefore
f(x) = g(x2). Equation (22) shows that the left-hand side is equal to∫

B(λ)

(∂qxf)dqV (x) = −
∫

B(λ)

x

r

(
Dq
rg(x2)

)
dV (x).

Therefore both left-hand and right-hand side are zero. The only case left is
f(x) = xg(x2). The left-hand side can be calculated using equations (21) and
(22) as ∫

B(λ)

(∂qxf)dqV (x)

= [m]q
∫

B(λ)

g(x2)dqV (x) + (qm + q)
∫

B(λ)

rDq
rg(x2)dqV (x)

+ q

∫
B(λ)

x2

r
Dq
rg(x2)dqV (x)

= [m]q
∫

B(λ)

g(x2)dqV (x) + qm
∫

B(λ)

rDq
rg(x2)dqV (x).

In case λ ∈ R+, the following relation can be calculated using equations (3)
and (6)

qm
∫ λ

0

drr
mDq

rh(r) =
∫ λ

0

dqrD
q
r(r

mh(r))− [m]q
∫ ∞

0

dqrr
m−1h(r)

= λmh(λ)− [m]q
∫ ∞

0

dqrr
m−1h(r).
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For λ ∈ R+ we therefore obtain∫
B(λ)

(∂qxf)dqV (x) = λmg(−λ2)
∫

Sm−1
dσ1

= −
∫
∂Bm(λ)

dσξxg(x2) = −
∫
∂Bm(λ)

dσ ξf(x).

The infinite integration can be calculated in the exact same way. It can also
be obtained from the first property by observing the relation

∫ a·∞
0

dqr =

limk→∞
∫ q−ka

0
dqr. �

6. Orthogonal polynomials

Now that the integration corresponding to the q-Dirac operator is defined,
one can consider orthogonal polynomials. Therefore we consider a fixed basis
{M (l)

k } for the space of spherical monogenics Mk which satisfies∫
Sm−1

dσ
[
M

(l)
k M

(t)
k

]
0

= δlt,

with [·]0 : Cm → C the projection of the Clifford algebra onto its scalar part.
In theorem 10 in [4] it was proven that for the inner product on P

defined as

〈f |g〉 =
∫

Bm

„
1√

1−q2

« [f(x)g(x)
]
0
eq2(x2)dqV (x),

the q-Clifford-Hermite polynomials given by

φj,k,l =

{
L

m
2 +k−1
i (−x2|q2)M (l)

k if j = 2i
xL

m
2 +k
i (−x2|q2)M (l)

k if j = 2i+ 1,

form an orthogonal basis for P. Although these polynomials are orthogonal
for the integration connected to the q-Dirac operator, they do not behave
well with respect to the q-Dirac operator developed in the present paper. For
instance it can be calculated that the relation

∂qxφj,k,l = Cj,k,lφj−1,k,l

will not hold for any constants Cj,k,l. Such an equation does hold for the q-
Dirac operator developed in [4], which therefore is better suited to generalize
the theory of q-orthogonal polynomials (see e.g. [3, 12]) to Clifford analysis.
Such an equation also holds for the q-Dirac operator developed in the present
paper and the polynomials ψj,k,l defined as

ψj,k,l =

{
Lαk,m−1
i (−x2|q2)M (l)

k if j = 2i
xLαk,m

i (−x2|q2)M (l)
k if j = 2i+ 1

with αk,m satisfying [2αk,m]q = [k+m]q + q[k]q. However, these polynomials
are not orthogonal with respect to the inner product introduced above.
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7. Conclusion

The q-Dirac operator defined by the list of axioms (B0) − (B7) is more
naturally defined compared to the Dirac operator in [4]. In the case of Clifford
analysis the q-Dirac operator in the current paper is uniquely defined from
the axioms (C0), (C3), (C5), (C6) and (C7). The real difference between
this list and the list of axioms (A1)− (A4) on p7 of [4] is that in the present
paper the q-anticommutator of ∂qx and x has to be scalar while in [4] the
square of the q-Dirac operator has to be scalar. The first condition is logical
in the framework of Clifford analysis, while the second condition is necessary
in order to obtain a q-deformed Laplace operator.

Both q-Dirac operators satisfy Stokes’ formula for the same type of q-
integration on Rmq . However, as the theory of q-Clifford-Hermite polynomials,
which are orthogonal with respect to this integration, is more closely linked
to the q-Dirac operator in [4], that operator is better suited to study q-
polynomials.

There are still other possible lists of axioms which define q-Dirac oper-
ators. Each definition seems to have its own specific advantage with respect
to integration, the Fischer decomposition, axial functions or q-polynomials.
An important direction for further research is a systematic study of the link
between changes in the axioms and properties of the resulting q-Dirac oper-
ator.
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