130 research outputs found
Variant of TYR and Autoimmunity Susceptibility Loci in Generalized Vitiligo.
BACKGROUND
Generalized vitiligo is an autoimmune disease characterized by melanocyte loss, which results in patchy depigmentation of skin and hair, and is associated with an elevated risk of other autoimmune diseases.
METHODS
To identify generalized vitiligo susceptibility loci, we conducted a genomewide association study. We genotyped 579,146 single-nucleotide polymorphisms (SNPs) in 1514 patients with generalized vitiligo who were of European-derived white (CEU) ancestry and compared the genotypes with publicly available control genotypes from 2813 CEU persons. We then tested 50 SNPs in two replication sets, one comprising 677 independent CEU patients and 1106 CEU controls and the other comprising 183 CEU simplex trios with generalized vitiligo and 332 CEU multiplex families.
RESULTS
We detected significant associations between generalized vitiligo and SNPs at several loci previously associated with other autoimmune diseases. These included genes encoding major-histocompatibility-complex class I molecules (P=9.05×10−23) and class II molecules (P=4.50×10−34), PTPN22 (P=1.31×10−7), LPP (P=1.01×10−11), IL2RA (P=2.78×10−9), UBASH3A (P=1.26×10−9), and C1QTNF6 (P=2.21×10−16). We also detected associations between generalized vitiligo and SNPs in two additional immune-related loci, RERE (P=7.07×10−15) and GZMB (P=3.44×10−8), and in a locus containing TYR (P=1.60×10−18), encoding tyrosinase.
CONCLUSIONS
We observed associations between generalized vitiligo and markers implicating multiple genes, some associated with other autoimmune diseases and one (TYR) that may mediate target-cell specificity and indicate a mutually exclusive relationship between susceptibility to vitiligo and susceptibility to melanoma
Common variants in FOXP1 are associated with generalized vitiligo
In a recent genome-wide association study of generalized vitiligo, we identified ten confirmed susceptibility loci. By testing additional loci that showed suggestive association in the genome-wide study, using two replication cohorts of European descent, we observed replicated association of generalized vitiligo with variants at 3p13 encompassing FOXP1 (rs17008723, combined P = 1.04 × 10−8) and with variants at 6q27 encompassing CCR6 (rs6902119, combined P = 3.94 × 10−7)
Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP
We previously carried out a genome-wide association study of generalized vitiligo (GV) in non-Hispanic whites, identifying 13 confirmed susceptibility loci. In this study, we re-analyzed the genome-wide data set (comprising 1,392 cases and 2,629 controls) to specifically test association of all 33 GV candidate genes that have previously been suggested for GV, followed by meta-analysis incorporating both current and previously published data. We detected association of three of the candidate genes tested: TSLP (rs764916, P3.0E-04, odds ratio (OR)1.60; meta-P for rs38069333.1E-03), XBP1 (rs6005863, P3.6E-04, OR1.17; meta-P for rs22695779.5E-09), and FOXP3 (rs11798415, P5.8E-04, OR1.19). Association of GV with CTLA4 (rs12992492, P5.9E-05, OR1.20; meta-P for rs2317751.0E-04) seems to be secondary to epidemiological association with other concomitant autoimmune diseases. Within the major histocompatibility complex (MHC), at 6p21.33, association with TAP1-PSMB8 (rs3819721, P5.2E-06) seems to derive from linkage disequilibrium with major primary signals in the MHC class I and class II regions
Musical Ratios in Sounds from the Human Cochlea
The physiological roots of music perception are a matter of long-lasting debate. Recently light on this problem has been shed by the study of otoacoustic emissions (OAEs), which are weak sounds generated by the inner ear following acoustic stimulation and, sometimes, even spontaneously. In the present study, a high-resolution time–frequency method called matching pursuit was applied to the OAEs recorded from the ears of 45 normal volunteers so that the component frequencies, amplitudes, latencies, and time-spans could be accurately determined. The method allowed us to find that, for each ear, the OAEs consisted of characteristic frequency patterns that we call resonant modes. Here we demonstrate that, on average, the frequency ratios of the resonant modes from all the cochleas studied possessed small integer ratios. The ratios are the same as those found by Pythagoras as being most musically pleasant and which form the basis of the Just tuning system. The statistical significance of the results was verified against a random distribution of ratios. As an explanatory model, there are attractive features in a recent theory that represents the cochlea as a surface acoustic wave resonator; in this situation the spacing between the rows of hearing receptors can create resonant cavities of defined lengths. By adjusting the geometry and the lengths of the resonant cavities, it is possible to generate the preferred frequency ratios we have found here. We conclude that musical perception might be related to specific geometrical and physiological properties of the cochlea
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
- …