661 research outputs found

    A lean way of design and production for healthcare construction projects

    Get PDF
    As a consequence of the lack of solid conceptual foundation, the project management concepts and techniques usually applied within the construction sector are fragmented and have proved to be incapable of solving the complex problems of design management. As a result, healthcare providers have become frustrated with the outcomes such as cost and schedule overruns, accidents, less than expected quality and inadequate functionality. However, an investigation of successful healthcare projects reveals that new approaches have been developed to tackle such problems. This study uses recent data based on six construction projects. The idea is demonstrate how successful projects are dealing with the integration between design, production, and operations, through an appropriate approach to the management of production systems. The paper aims to assist the different parties of the AEC industry to better understand how practices applied into design phase could support the efficiency in the management of production systems

    Kinetic and Spectroscopic Characterisation of Highly Reactive Methanesulfonates. Leaving Group Effects for Solvolyses and Comments on Geminal Electronic Effects Influencing SN_N1 Reactivity

    Get PDF
    Highly reactive methanesulfonates (mesylates, ROMs) have been prepared from 1-phenylethanol. cyclohex-2-en-1-ol, diphenylmethanol and p-methoxybenzyl alcohol by treatment with methanesulfonyl chloride and triethylamine in dichloro- or trichloro-methane at - 20 to 0 °C. The mesylates. characterised in solution by 1^1H and 13^{13}C NMR at -20 °C, were obtained in satisfactory purity (ca. 95%) in cold solutions but they decomposed by reaction with chloride, triethylamine or the parent alcohol. Rate constants for solvolyses in aqueous acetone and aqueous ethanol have been determined by a fast response conductimetric method. Product selectivities for solvolyses of pmethoxybenzyl mesylate in aqueous ethanol and methanol at 0 °C have been determined by HPLC. From additional new or Iiterature kinetic data for solvolyses of corresponding bromides. chlorides and p-nitrobenzoates (OPNB). Br/CI. OMs/Br and OMs/OPNB rate ratios were calculated; the results are consistent with electronic effects stabilising the carbocationic transition states and increasing OMs/Br rate ratios for these SN 1 solvolyses; none of the evidence supports a geminal electronic effect on Br/CI rate ratios (e.g. caused by stabilisation of the initial state in pmethoxybenzyl chloride). Steric effects on ester /halide rate ratios for solvolyses of tertiary substrates are confirmed. Relative rates over a 1016^{16} range for ester and halide leaving groups are evaluated for solvolyses of 1-phenylethyl substrates in 80% ethanol-water. updating previous work by Noyce et al. (1972)

    Alternative evolutionary paths to bacterial antibiotic resistance cause distinct collateral effects.

    Get PDF
    Published onlineJournal ArticleThis is the author accepted manuscript. The final version is available from Oxford University Press via the DOI in this record.When bacteria evolve resistance against a particular antibiotic, they may simultaneously gain increased sensitivity against a second one. Such collateral sensitivity may be exploited to develop novel, sustainable antibiotic treatment strategies aimed at containing the current, dramatic spread of drug resistance. To date, the presence and molecular basis of collateral sensitivity has only been studied in few bacterial species and is unknown for opportunistic human pathogens such as Pseudomonas aeruginosa. In the present study, we assessed patterns of collateral effects by experimentally evolving 160 independent populations of P. aeruginosa to high levels of resistance against eight commonly used antibiotics. The bacteria evolved resistance rapidly and expressed both collateral sensitivity and cross-resistance. The pattern of such collateral effects differed to those previously reported for other bacterial species, suggesting inter-specific differences in the underlying evolutionary trade-offs. Intriguingly, we also identified contrasting patterns of collateral sensitivity and cross-resistance among the replicate populations adapted to the same drug. Whole-genome sequencing of 81 independently evolved populations revealed distinct evolutionary paths of resistance to the selective drug, which determined whether bacteria became cross-resistant or collaterally sensitive towards others. Based on genomic and functional genetic analysis, we demonstrate that collateral sensitivity can result from resistance mutations in regulatory genes such as nalC or mexZ, which mediate aminoglycoside sensitivity in β-lactam-adapted populations, or the two-component regulatory system gene pmrB, which enhances penicillin sensitivity in gentamicin-resistant populations. Our findings highlight substantial variation in the evolved collateral effects among replicates, which in turn determine their potential in antibiotic therapy.We thank Anette Friedrichs, Lutz Becks, and the Schulenburg group for valuable advice and Melanie Vollstedt for technical support during genome sequencing. We are grateful for financial support from the German Science Foundation (DFG grant SCHU 1415/12-1) and the International Max-Planck Research School for Evolutionary Biology at the University of Kiel. We acknowledge infrastructural support by the DFG excellence cluster Inflammation at Interfaces

    Test Results on the Silicon Pixel Detector for the TTF-FEL Beam Trajectory Monitor

    Full text link
    Test measurements on the silicon pixel detector for the beam trajectory monitor at the free electron laser of the TESLA test facility are presented. To determine the electronic noise of detector and read-out and to calibrate the signal amplitude of different pixels the 6 keV photons of the manganese K line are used. Two different methods determine the spatial accuracy of the detector: In one setup a laser beam is focused to a straight line and moved across the pixel structure. In the other the detector is scanned using a low-intensity electron beam of an electron microscope. Both methods show that the symmetry axis of the detector defines a straight line within 0.4 microns. The sensitivity of the detector to low energy X-rays is measured using a vacuum ultraviolet beam at the synchrotron light source HASYLAB. Additionally, the electron microscope is used to study the radiation hardness of the detector.Comment: 14 pages (Latex), 13 figures (Postscript), submitted to Nuclear Instruments and Methods

    Unknotting the polarized vacuum of quenched QED

    Full text link
    A knot-theoretic explanation is given for the rationality of the quenched QED beta function. At the link level, the Ward identity entails cancellation of subdivergences generated by one term of the skein relation, which in turn implies cancellation of knots generated by the other term. In consequence, each bare three-loop diagram has a rational Laurent expansion in the Landau gauge, as is verified by explicit computation. Comparable simplification is found to occur in scalar electrodynamics, when computed in the Duffin-Kemmer-Petiau formalism.Comment: 11 pages, LaTe

    Effects due to a scalar coupling on the particle-antiparticle production in the Duffin-Kemmer-Petiau theory

    Full text link
    The Duffin-Kemmer-Petiau formalism with vector and scalar potentials is used to point out a few misconceptions diffused in the literature. It is explicitly shown that the scalar coupling makes the DKP formalism not equivalent to the Klein-Gordon formalism or to the Proca formalism, and that the spin-1 sector of the DKP theory looks formally like the spin-0 sector. With proper boundary conditions, scattering of massive bosons in an arbitrary mixed vector-scalar square step potential is explored in a simple way and effects due to the scalar coupling on the particle-antiparticle production and localization of bosons are analyzed in some detail

    Status of a DEPFET pixel system for the ILC vertex detector

    Get PDF
    We have developed a prototype system for the ILC vertex detector based on DEPFET pixels. The system operates a 128x64 matrix (with ~35x25 square micron large pixels) and uses two dedicated microchips, the SWITCHER II chip for matrix steering and the CURO II chip for readout. The system development has been driven by the final ILC requirements which above all demand a detector thinned to 50 micron and a row wise read out with line rates of 20MHz and more. The targeted noise performance for the DEPFET technology is in the range of ENC=100 e-. The functionality of the system has been demonstrated using different radioactive sources in an energy range from 6 to 40keV. In recent test beam experiments using 6GeV electrons, a signal-to-noise ratio of S/N~120 has been achieved with present sensors being 450 micron thick. For improved DEPFET systems using 50 micron thin sensors in future, a signal-to-noise of 40 is expected.Comment: Invited poster at the International Symposium on the Development of Detectors for Particle, AstroParticle and Synchrotron Radiation Experiments, Stanford CA (SNIC06) 6 pages, 12 eps figure

    Comment on ``the Klein-Gordon Oscillator''

    Get PDF
    The different ways of description of the S=0S=0 particle with oscillator-like interaction are considered. The results are in conformity with the previous paper of S. Bruce and P. Minning.Comment: LaTeX file, 5p

    Exact Solution of Photon Equation in Stationary G\"{o}del-type and G\"{o}del Space-Times

    Get PDF
    In this work the photon equation (massless Duffin-Kemmer-Petiau equation) is written expilicitly for general type of stationary G\"{o}del space-times and is solved exactly for G\"{o}del-type and G\"{o}del space-times. Harmonic oscillator behaviour of the solutions is discussed and energy spectrum of photon is obtained.Comment: 9 pages,RevTeX, no figure, revised for publicatio
    • …
    corecore