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Abstract (max. 250 words) 20 

When bacteria evolve resistance against a particular antibiotic, they may 21 

simultaneously gain increased sensitivity against a second one. Such collateral 22 

sensitivity may be exploited to develop novel, sustainable antibiotic treatment strategies 23 

aimed at containing the current, dramatic spread of drug resistance. To date, the 24 

presence and molecular basis of collateral sensitivity has only been studied in few 25 

bacterial species and is unknown for opportunistic human pathogens such as 26 

Pseudomonas aeruginosa. In the present study, we assessed patterns of collateral 27 

effects by experimentally evolving 160 independent populations of P. aeruginosa to 28 

high levels of resistance against eight commonly used antibiotics. The bacteria evolved 29 

resistance rapidly and expressed both collateral sensitivity and cross-resistance. The 30 

pattern of such collateral effects differed to those previously reported for other bacterial 31 

species, suggesting inter-specific differences in the underlying evolutionary trade-offs. 32 

Intriguingly, we also identified contrasting patterns of collateral sensitivity and cross-33 

resistance among the replicate populations adapted to the same drug. Whole-genome 34 

sequencing of 81 independently evolved populations revealed distinct evolutionary 35 

paths of resistance to the selective drug, which determined whether bacteria became 36 

cross-resistant or collaterally sensitive towards others. Based on genomic and 37 

functional genetic analysis, we demonstrate that collateral sensitivity can result from 38 

resistance mutations in regulatory genes such as nalC or mexZ, which mediate 39 

aminoglycoside sensitivity in β-lactam-adapted populations, or the two-component 40 

regulatory system gene pmrB, which enhances penicillin sensitivity in gentamicin-41 

resistant populations. Our findings highlight substantial variation in the evolved 42 

collateral effects among replicates, which in turn determine their potential in antibiotic 43 

therapy. 44 

  45 
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Introduction 46 

Bacteria have the potential to rapidly adapt to virtually any natural or laboratory 47 

environment (Kussell 2013). The long-term evolution experiment with Escherichia coli 48 

(LTEE) has shown that even in simple constant environments, bacteria can achieve 49 

comprehensive fitness increases of about 25% within the first 2,000 generations (Lenski 50 

et al. 1991). Although the LTEE populations show reduced adaptation rates at later time 51 

points (e.g., after 50,000 generations), they still continue to accumulate an almost 52 

constant number of new beneficial mutations (Barrick et al. 2009; Tenaillon et al. 53 

2016). Thus, bacteria can adapt rapidly to new challenges and subsequently continue to 54 

optimize their fitness. Such remarkable adaptive potential was also observed under 55 

more challenging conditions: Using evolution experiments with antibiotics, E. coli 56 

evolved high levels of drug resistance through the step-wise accumulation of multiple 57 

mutations when drug concentrations increased over time (Toprak et al. 2012) or across 58 

space (Baym, Lieberman, et al. 2016). Bacteria also readily adapted when they were 59 

challenged with two antibiotics simultaneously (Chait et al. 2007; Hegreness et al. 60 

2008; Michel et al. 2008; Pena-Miller et al. 2013), or sequentially (Kim et al. 2014; 61 

Fuentes-Hernandez et al. 2015; Roemhild et al. 2015).  62 

 63 

Rapid bacterial adaptation to new environments often involves evolutionary trade-offs 64 

in the form of reduced fitness under alternative growth conditions (Kussell 2013). In 65 

the case of antibiotic resistance evolution, two types of trade-offs (or costs) are 66 

commonly observed: (i) evolved resistance is costly in the absence of the drugs, thus 67 

generating growth deficiencies relative to the susceptible ancestor (Andersson and 68 

Hughes 2010; Melnyk et al. 2015), and (ii) resistance mutations may exacerbate 69 

susceptibility against others (i.e. collateral sensitivity (Szybalski and Bryson 1952; Pál 70 

et al. 2015); also referred to as hypersensitivity, or negative cross-resistance in previous 71 

publications). However, adaptive mutations do not always entail a cost but instead may 72 

increase resistance against other antibiotics (i.e., collateral resistance or cross-73 

resistance); thus favoring multi-drug resistance. 74 

 75 

The phenomenon of collateral sensitivity was first described in the 1950s in a study by 76 

Szybalski and Bryson, in which the authors tested if experimentally evolved resistant 77 

E. coli was less, equally or more sensitive to previously unmet drugs (Szybalski and 78 

Bryson 1952). Despite finding that cross-resistance was much more prevalent than 79 
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collateral sensitivity, the authors hypothesized that these rare cases could then be 80 

exploited by rationally using more than one drug during treatment of resistant clinical 81 

strains. The employment of drug pairs that produce reciprocal collateral sensitivity 82 

might trap bacteria in an evolutionary ‘double-bind’, thus improving treatment efficacy 83 

and decreasing the evolution of resistance. This idea was more recently tested by 84 

exposing bacteria to such drug pairs being deployed sequentially (Imamovic and 85 

Sommer 2013; Kim et al. 2014; Fuentes-Hernandez et al. 2015; Roemhild et al. 2015) 86 

or simultaneously (Munck et al. 2014; Evgrafov et al. 2015). Additionally, several other 87 

studies have further evaluated what factors could help to predict the changes in drug 88 

sensitivity in experimentally evolved resistant E. coli. These showed that the strength 89 

of selection and the chemogenomic profile similarity between antibiotics play 90 

significant roles in the evolution of resistance and hence influence the patterns of cross-91 

resistance and hypersensitivity (Lázár et al. 2013; Lázár et al. 2014; Oz et al. 2014). 92 

 93 

To fully determine the importance of such trade-offs during bacterial adaptation and 94 

also their therapeutic potential, the patterns of collateral resistance/sensitivity observed 95 

in E. coli need to be assessed in other, clinically relevant bacterial taxa, including those 96 

known to possess high adaptive capacity such as members of the genus Pseudomonas. 97 

This group of bacteria are able to colonize and thrive in a plethora of niches (Nikel et 98 

al. 2014), and act as prominent plant and human pathogens (Loper et al. 2012; 99 

Rodríguez-Rojas et al. 2012; Balasubramanian et al. 2013). For instance, the 100 

opportunistic human pathogen P. aeruginosa is commonly associated with hospital-101 

acquired infections, and it is a major cause of chronic lung disease, including the 102 

ultimately fatal infections in cystic fibrosis patients (Govan and Deretic 1996; Arruda 103 

et al. 1999; Kang et al. 2003; Folkesson et al. 2012). Its success as an opportunistic 104 

pathogen can be largely attributed to its vast array of virulence factors, including the 105 

production of alginate to form biofilms, its ability to survive oxidative stress, and the 106 

availability of various secretion systems (Hauser 2009; Ma et al. 2009; Burrows 2012; 107 

Jimenez et al. 2012; Korotkov et al. 2012). Moreover, it carries a large array of intrinsic 108 

antibiotic resistance mechanisms and an exceptional potential to acquire resistance, 109 

both de novo or horizontally transferred (Arruda et al. 1999; Carmeli et al. 1999; 110 

Hancock and Speert 2000; Poole 2001; Drenkard and Ausubel 2002; Livermore 2002; 111 

Overhage et al. 2008; Breidenstein et al. 2011). To date there is neither information on 112 

the evolution of drug sensitivity trade-offs in P. aeruginosa, nor on its genomic 113 
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underpinnings. To rectify this knowledge gap, we experimentally selected 160 highly 114 

resistant populations of P. aeruginosa PA14 (plus 20 control populations) and 115 

evaluated the possibility of evolutionary trade-offs in the form of fitness deficiencies in 116 

the absence of antibiotics and hypersensitivity to other drugs. We assessed the 117 

underlying molecular mechanisms of such trade-offs through whole-genome 118 

sequencing of 81 evolved resistant populations.  119 

 120 

Results and discussion 121 

Rapid evolution of antibiotic resistance 122 

We used experimental evolution to generate independent populations of P. aeruginosa 123 

PA14 with significantly increased resistance against eight different antibiotics. We 124 

challenged 20 isogenic populations against increasing concentrations of one out of eight 125 

different drugs (for abbreviations of all antibiotics see table 1), and included an 126 

evolutionary control grown in media only, resulting in a total of 180 independent 127 

populations. Experiments were initiated at half the concentration inhibiting >90% of 128 

growth (abbreviated IC90), as determined for the ancestral PA14. Populations were 129 

then serially transferred every 12 h for 24 days (48 transfers; approximately 58 130 

generations) until reaching around 40 times the IC90, or until less than half of the 131 

starting populations from a given antibiotic were still growing (fig. 1A). In the cases of 132 

DOR, IMI, and CAR, more than half of the populations went extinct at transfers 20, 28, 133 

and 40, respectively; we accordingly isolated 10 populations adapted to the 2x, 5x and 134 

17x environments for further analysis. In all other cases, we randomly chose 10 135 

surviving populations per antibiotic for subsequent characterization. Frozen 136 

populations adapted to GEN could not be recovered after thawing; we could only revive 137 

10 of those adapted to the 5x environment. Altogether we obtained 80 populations 138 

adapted to 8 different antibiotics and 10 additional ones adapted to media only.  139 

 140 

Table 1. List of antibiotics used during selection experiments. 141 

Functional target Class Drug Abbreviation 

DNA repair Quinolones Ciprofloxacin CIP 

Protein synthesis Aminoglycosides Gentamicin GEN 

Streptomycin STR 

Cell wall synthesis Penicillins Piperacillin + Tazobactam PIT 

Carbenicillin CAR 
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Carbapenems Doripenem DOR 

Imipenem IMI 

Cephalosporins Cefsulodin CEF 

 142 

For the selected populations, we quantified the changes in resistance to the respective 143 

drug used during the evolution experiment (see Materials and Methods). P. aeruginosa 144 

could rapidly (within 58 generations or less) reach resistance levels of at least 32 times 145 

the IC90 of the ancestral PA14 for most antibiotics (fig. 1B-I). Interestingly, we 146 

observed substantial variation within particular drug treatments, suggesting different 147 

routes of adaptation to the antibiotic. Similar increases in drug resistance were found in 148 

a recent study with the related P. aeruginosa strain PAO1 (Cabot et al. 2016), 149 

highlighting the adaptive potential of this species. The same study also revealed in most 150 

cases an association of increased resistance with genomic changes in well-known 151 

resistance pathways. P. aeruginosa’s resistance thus appears to be achieved fast 152 

through diverse mechanisms. Several comparable E. coli evolution experiments 153 

resulted in similar levels of resistance, although variation between populations adapted 154 

to the same drug was less pronounced than observed here for P. aeruginosa (Imamovic 155 

and Sommer 2013; Lázár et al. 2013; Oz et al. 2014). 156 

 157 
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 158 

Fig. 1. Directional selection of highly resistant P. aeruginosa. (A) Illustration of the 159 

experimental design used for the selection of resistant populations. Twenty replicate 160 

populations for each of the eight included antibiotics (Table 1) and a control without 161 

antibiotic (a total of 180 populations) were serially transferred every 12h into fresh 162 

medium and, for the drug treatments, increasing concentrations of each drug. Selection 163 

was initiated at 0.5 times the concentration inhibiting >90% of growth (IC90) and 164 

concluded at ~40 times of the IC90. (B-I) Ten populations for each antibiotic were 165 

subsequently evaluated for their growth on different concentrations of the drug 166 

experienced during the experiment. Dose-response curves are shown in the left panels 167 

and IC90 fold changes in the right panels. The ten replicate populations are shown in 168 

different colors, while the black line represents the ancestral P. aeruginosa PA14.  169 
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 170 

Rapid resistance evolution entails a growth cost 171 

To evaluate whether the evolution of high drug resistance levels was generally 172 

associated with a fitness deficiency, we measured different growth parameters of all of 173 

the evolved populations, and the ancestral PA14 in a drug-free environment. We found 174 

that the control populations, which evolved without antibiotics, had significantly 175 

shorter lag phases and lower growth rates relative to the ancestor (supplementary fig. 176 

S1). These results suggest that adaptation to the medium alone can have strong effects 177 

on fitness. These effects could in turn influence antibiotic resistance. To evaluate this, 178 

we compared the sensitivity of the evolved control populations and the ancestor against 179 

each of the eight antibiotics. In general, we found no significant differences between 180 

the dose response curves of the controls and the ancestor (supplementary fig. S2). The 181 

only exceptions refer to cases at sub-inhibitory drug concentrations where the evolved 182 

populations showed higher growth than the ancestral PA14. More importantly, with 183 

only a single exception, none of the replicate populations showed a change in the IC90, 184 

thus indicating that the fitness alterations of the evolved controls do not translate into 185 

changes in drug sensitivity (supplementary fig. S2). 186 

 187 

As evolution in the absence of drugs affected growth characteristics, we specifically 188 

assessed the costs associated with the adaptation to antibiotics by relating our growth 189 

measures of the 80 resistant populations to those of the evolved controls. Resistant 190 

populations showed changes in at least one of the measured growth characteristics: lag 191 

time, growth rate, and maximum yield (fig. 2). In all cases, we observed a significantly 192 

longer time spent in lag phase, and in most cases (5 out of 8 drugs), a significant 193 

reduction of about 20-50% in maximum yield. Only populations adapted to PIT and 194 

GEN had significantly reduced growth rates. Overall, 90% of the resistant populations 195 

spent longer times in lag phase, 49% produced lower maximum yields, and 36% had 196 

lower growth rates (supplementary table S1). Interestingly, 60% of the resistant 197 

populations had a significant cost in at least two of the parameters, whereas only five 198 

of the populations showed no fitness costs at all.  199 

 200 

In most cases there was substantial variation among populations adapted to the same 201 

drug (fig. 2). This might have been the result of at least two paths: a direct outcome of 202 

costly adaptation resulting in varying lengths of lag phases depending on the favored 203 
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resistance mechanism, or, alternatively, an indirect consequence of our experimental 204 

design in which selection independently acted in favor of tolerance. In the latter case, 205 

an extended lag phase could have allowed P. aeruginosa to remain in the environment 206 

without immediately changing its initial resistance levels but instead increasing 207 

antibiotic tolerance. This could have ultimately resulted in varying levels of measured 208 

resistance among the various populations (Levin-Reisman et al. 2017). However, we 209 

found no significant correlation between the IC90 fold change and the lag time (or any 210 

of the growth parameters) for any of the antibiotics used (supplementary table S2 and 211 

supplementary fig. S3). This strongly suggests that the differences in resistance are not 212 

a result of selection for tolerance, but rather due to underlying differences in the 213 

resistance mechanisms that in turn have distinct effects on growth. This finding also 214 

means that the extent of the resistance increase does not linearly translate into a fitness 215 

cost, but most likely depends on the specific underlying mechanism. 216 

 217 

 218 

 219 

Fig. 2. Relative fitness in the absence of antibiotics. Shown, from top to bottom, is 220 

fitness relative to the average of the evolved control populations, calculated for growth 221 



 10 

rate, lag time, and maximum yield for all populations adapted to one of the eight 222 

antibiotics (X-axis) after 24h of growth in antibiotic-free media. Colored points 223 

represent the replicate populations and the horizontal grey crossbars indicate the mean 224 

for each antibiotic. Black dashed lines highlight equality to the controls; values above 225 

indicate a fitness advantage whereas values below denote a cost. Plase note that for the 226 

lag phase, this is inverted: values larger than 1 indicate a longer time spent in lag phase 227 

and thus a fitness cost. Asterisks on top of each panel indicate significant difference 228 

from 1 (i.e., a significant change in fitness) using a Wilcoxon Rank test with probability 229 

adjustment based on the false discovery rate (FDR) to account for multiple testing. 230 

 231 

 232 

The extent to which growth costs are associated with antibiotic resistance evolution has 233 

been evaluated for a variety of combinations of bacteria and drugs, including P. 234 

aeruginosa (Kugelberg et al. 2005; Andersson and Hughes 2010; Melnyk et al. 2015). 235 

These studies demonstrated that mutations conferring high levels of resistance usually 236 

lead to larger fitness costs. Moreover, after adaptation to increasing drug 237 

concentrations, a higher number and more complex types of mutations (i.e., large 238 

deletions) coincide with larger defects in growth rate (Lázár et al. 2014). Considering 239 

such substantial resistance costs, it is surprising that resistant mutants persist both in 240 

clinical and experimental environments. Several factors were previously found to 241 

ameliorate or completely alleviate the effects of resistance mutations on growth. For 242 

instance, quinolone resistant P. aeruginosa showed a high prevalence of cost-free 243 

mutations as well as the emergence of compensatory mutations in genes that, 244 

unexpectedly, are not directly associated to the fitness defect (Kugelberg et al. 2005). 245 

In fact, some of our populations showed an increase in fitness in some or all of the 246 

growth parameters measured, emphasizing that the costs associated with some resistant 247 

mechanisms can be ameliorated rapidly (within 58 generations) or incur no costs at all. 248 

Furthermore, the role of epistatic effects, the genetic background in which mutations 249 

occur, and the environment also seem to play an important role in the magnitude of the 250 

cost (Melnyk et al. 2015). Therefore, there is a lack of predictability, constraining the 251 

potential clinical use of such information for a rational design of treatment strategies.  252 

 253 

Comprehensive collateral effects upon antibiotic resistance evolution 254 
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We then tested the evolved populations for the presence of collateral sensitivity or 255 

resistance against all other drugs. For this we challenged each population against 256 

various concentrations (in triplicate) of all the antibiotics and compared their growth to 257 

the ancestral PA14. To quantify the change in resistance or sensitivity we considered 258 

growth relative to the no-drug environment, which accounts for general fitness changes 259 

resulting from adaptation to the experimental environment. We then calculated the area 260 

under the curve (AUC) of the ancestral PA14 and subtracted it from that of each 261 

population (fig. 3A and B, for the IC90 fold changes see supplementary fig. S4). 262 

Finally, we counted how often adaptation to one antibiotic led to resistance against any 263 

other, hereby defined as direct adaptation, and also; how many times resistance to a 264 

given drug evolved after adaptation to another one, hereby defined as indirect 265 

adaptation (fig. 3C). The same process was repeated to calculate the number of cases 266 

of sensitivity by direct or indirect adaptation.  267 

 268 

 269 

 270 

 271 

Fig. 3. Evolution of collateral sensitivity and resistance. (A) Illustration of the 272 

quantification of evolved collateral resistance or sensitivity. Bacterial growth (relative 273 

to a no-drug environment) of all evolved populations and the ancestral P. aeruginosa 274 

PA14 is first measured across concentrations of the various antibiotics. The area under 275 

the curve of the ancestor is subsequently subtracted from that of each population; 276 

resulting negative values indicate sensitivity (bottom panel), whereas positive values 277 

denote resistance (top panel). (B) The collateral profiles of all experimentally evolved 278 

populations (rows refer to the drugs used during experimental evolution), challenged 279 

against all other antibiotics (as indicated by columns). The vertical bars within each 280 
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block represent the replicate population. The different shades of purple or green 281 

highlight the extent of sensitivity or resistance, respectively. (C) We counted the total 282 

number of cases, for which adaptation to a particular antibiotic (listed in the middle) 283 

led to collateral sensitivity or resistance (direct adaptation; left panel), and also the total 284 

number of cases, for which sensitivity or resistance towards the focal antibiotic was 285 

observed upon adaptation to any of the other drugs (indirect adaptation; right panel).  286 

 287 

Overall, we identified collateral effects in almost all population with evolved 288 

resistances, whereby cross-resistance is generally more common than collateral 289 

sensitivity (supplementary fig. S5 and fig. 3B and C; direct adaptation). Essentially 290 

identical results are obtained if IC90 fold change is used for the analysis rather than 291 

AUC differences (supplementary fig. S4). Five main conclusions can be drawn from 292 

our analysis. (i) Adaptation to a given antibiotic leads to collateral resistance to drugs 293 

of similar classes (see the aminoglycosides STR, and GEN, or the β-lactams CEF, PIT 294 

and CAR). (ii) Resistance to most drugs leads to collateral sensitivity against 295 

aminoglycosides, whereas resistance to aminoglycosides leads to collateral sensitivity 296 

almost exclusively to the penicillin-type β-lactams (PIT and CAR; fig. 3B and C; 297 

indirect adaptation). (iii) Adaptation to CIP or DOR leads to enhanced sensitivity 298 

against most other drugs, but interestingly this effect appears to be unidirectional: 299 

adaptation to other antibiotics rarely leads to sensitivity against these two drugs (fig. 300 

3C; indirect resistance). (iv) Collateral resistance against CEF, a 3rd generation 301 

cephalosporin with specific activity against P. aeruginosa, is found upon resistance 302 

evolution towards all other drugs, suggesting that resistance to some cephalosporins 303 

may be readily achieved indirectly, thus compromising its use as a second-line drug. 304 

(v) In several cases, substantial variation was observed among populations adapted to 305 

the same drug, suggesting that different resistance mechanisms may lead to contrasting 306 

patterns of collateral effects.  307 

 308 

The evolution of collateral resistance and sensitivity seems to be a widespread trade-309 

off in bacteria following drug resistance evolution. For example, in E. coli, collateral 310 

resistance towards drugs of the same class was repeatedly observed (Imamovic and 311 

Sommer 2013; Lázár et al. 2013; Lázár et al. 2014; Oz et al. 2014). These previous 312 

studies also revealed interesting exceptions. Some drugs, such as CIP, were often 313 

targets of indirect multi-drug resistance evolution, regardless of the similarity of the 314 
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drug used during experimental evolution. Also, the strength of cross-resistance was 315 

variable even among drugs with the same cellular targets. For instance, within the cell-316 

wall inhibitors, adaptation to penicillins seems to lead to cross-resistance more often 317 

than adaptation to carbapenems.  318 

 319 

It is noteworthy that the direction of collateral sensitivity differs in specific cases 320 

between P. aeruginosa and E. coli. In particular, resistance to the aminoglycosides 321 

often preceded a two-fold reduction in MIC against most other drugs in E. coli 322 

(Imamovic and Sommer 2013; Lázár et al. 2013). In contrast, adaptation to the same 323 

drugs in PA14 more often led to cross-resistance, while in some individual populations 324 

collateral sensitivity was observed almost exclusively towards the penicillins. 325 

Moreover, CIP-adapted E. coli strains usually exhibited cross-resistance to most other 326 

drugs (Imamovic and Sommer 2013; Lázár et al. 2014), while our experiments with P. 327 

aeruginosa produced hypersensitivity in such combinations. These findings highlight 328 

the presence of key differences between species in the evolved collateral effects 329 

following drug adaptation. Systematic evaluation of different pathogen-drug 330 

combinations is thus essential for a full appreciation of incidences and diversity of 331 

evolved collateral sensitivity (Imamovic and Sommer 2013; Lázár et al. 2014).  332 

 333 

Unexpectedly, our results further demonstrate the presence of substantial variation in 334 

collateral effects upon adaptation to one drug. In several cases, we even observed 335 

contrasting patterns of either collateral sensitivity or resistance. For example, CEF-336 

adapted populations exposed to GEN produced three cases of cross-resistance, five 337 

cases of collateral sensitivity, and two neutral effects (fig. 3A; fig. S4). Similar variation 338 

in collateral effects are also found for all other antibiotic treatments, with the exception 339 

of IMI, most likely due to low sample size (i.e., only 2 populations could be included 340 

in the analysis). Moreover, such divergence in collateral effects upon antibiotic 341 

resistance evolution has not yet been reported for other bacterial species. These findings 342 

strongly suggest that our replicate P. aeruginosa populations from a particular 343 

antibiotic treatment achieved resistance through different molecular mechanisms, 344 

which in turn had opposite effects on the interaction with a second antibiotic. 345 

 346 

Cross-resistance may result from the chemical similarity between drugs  347 



 14 

Recent studies have followed Szybalski and Bryson’s hypothesis that the chemical 348 

relatedness between different drugs could explain the prevalence of cross-resistance, 349 

finding a partial correlation between them in E. coli (Lázár et al. 2014). However, the 350 

reported relationship was strongly biased by the aminoglycosides, since no cross-351 

resistance to such drugs was observed and these possess a chemical structure that is 352 

fundamentally different to that of the other drugs. In the case of P. aeruginosa, we often 353 

observed cross-resistance to the aminoglycosides, thus allowing us to further explore 354 

the range of relationships between drug similarities and the frequency of cross-355 

resistances. For such an analysis, we first inferred the chemical similarity among all 356 

antibiotics by calculating the Jaccard’s index obtained from the pairwise comparison of 357 

their chemical fingerprints (supplementary fig. S6). We then related these similarities 358 

to the frequencies of collateral resistances (FCR) for all drug pairs (see Materials and 359 

Methods, and Lázár et al. 2014). Our analysis revealed a significant correlation between 360 

these two parameters (fig. 4). Importantly, drugs targeting the same cellular process are 361 

not necessarily chemically similar (e.g., IMI and PIT or DOR and CAR) and in these 362 

cases we do not find high levels of cross-resistance. Altogether, chemical similarity 363 

appears in most cases to be a key determinant of the probability of cross-resistance.  364 

 365 

 366 

 367 

Fig. 4. Chemical similarity correlates with frequency of collateral resistance. Pairwise 368 

Jaccard’s similarity indexes where calculated based on the chemical fingerprints of 369 

each antibiotic. The frequency of collateral resistance (FCR) was then determined as 370 

, where RAB is the number of populations resistant to drug 371 

A with cross-resistance to drug B (and vice versa for RBA), and LAB is the total number 372 

of populations adapted to A and B. A significant correlation was then found between 373 

the chemical similarity and the FCR (Spearman’s rank correlation). Each point 374 

FCR= RA®B + RB®A( ) / LAB
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corresponds to a chemical comparison between any two given drugs. Labels are shown 375 

for some, but not all, of these pairwise comparisons.  376 

 377 

Distinct mutations underlie the evolution of high antibiotic resistance 378 

To better understand the genetic mechanisms selected during the evolution of high 379 

antibiotic resistance, we obtained whole genome sequences for 81 evolved populations: 380 

71 antibiotic adapted populations and 10 controls. We characterized genomic variations 381 

using a previously established analysis pipeline (see Materials and Methods; Jansen et 382 

al. 2015). An important step of the pipeline is to remove substitutions which occurred 383 

in the control populations, as these may result from adaptation to general experimental 384 

conditions and could thus obscure the signals relevant for adaptation to the antibiotics 385 

(see supplementary table S4 for a list of mutations found in the evolved control 386 

populations). We further annotated the genes with mutations in coding regions using 387 

DAVID, the Pseudomonas Database (available online at: http://pseudomonas.com), 388 

and published information to group them by function and their likely involvement in 389 

antibiotic resistance. In general, we observed an average of 10.5 genes affected per 390 

antibiotic environment (fig. 5A), but with different degrees of mutational diversity 391 

(supplementary fig. S7). Most mutations were non-silent and may thus have contributed 392 

to adaptation (fig. 5B and C): 89% of the mutations were observed in coding regions 393 

(Intergenic vs. all other mutations, χ2 test, χ2 = 50.94, df = 1, P < 0.0001); 83% of the 394 

variants found in coding regions (e.g., different types of non-synonymous, 395 

insertions/deletions [indels], or frameshift mutations) led to partial or complete loss of 396 

function (Intergenic and Synonymous SNPs vs. all other type of variants, χ2 test, χ2 = 397 

39.15, df = 1, P < 0.0001), and more than half of the variants observed were fixed at 398 

levels above 40% (Number of variants <40% fixed vs. variants ≥40% fixed, χ2 test, χ2 399 

= 50.94, df = 1, P = 0.003).  400 

 401 

For subsequent analysis we focused on genes having mutations in their coding regions 402 

only (fig. 5D). Interestingly, the only two surviving populations adapted to IMI showed 403 

mutations in mutL, a gene coding for a DNA repair enzyme generally associated with 404 

hypermutator phenotypes (Oliver et al. 2002; Montanari et al. 2007; Ciofu et al. 2010); 405 

these populations accumulated as many mutations in half the number of generations as 406 

the others during the entire experiment (supplementary table S5). The various DOR 407 
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adapted populations produced a unique SNP in a single gene, oprD: a membrane protein 408 

(fig. 5D). The populations adapted to all other antibiotics showed a larger number of 409 

genomic changes across a variety of genes (fig. 5D).  410 

 411 

 412 

Fig. 5. Genomics of adaptation. Distribution of the number of genes with substitutions 413 

per (A) antibiotic used in the evolution experiment, (B) type of mutational change, and 414 

(C) average frequency class within the replicate populations. (D) Functional effect of 415 

mutations found in coding regions of the listed genes (vertical axis, left side) across 416 

evolution experiments with different antibiotics (horizontal axis). Functional 417 

information (right side) is inferred from a combined analysis using DAVID, the 418 

Pseudomonas database and publications. Different shades of red indicate the percentage 419 

of affected populations per evolution experiment with a particular antibiotic.  420 

 421 

The functional annotation revealed changes in three main functions across evolved 422 

populations (fig. 5D): The first group of affected genes is related to direct targets of the 423 

β-lactam antibiotics and was primarily identified in populations adapted to CEF, CAR 424 

and PIT. This group included genes associated with peptidoglycan synthesis 425 
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(supplementary table S4): the penicillin-binding protein 3 (PBP3) ftsI, and also the 426 

UDP-N-acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase 427 

mpI. Non-silent mutations in these genes were previously demonstrated to increase 428 

resistance against β-lactams, either by limiting the interaction between antibiotics and 429 

the products of these genes, or by indirectly inducing SOS responses or enhanced efflux 430 

(Miller et al. 2004; Tsutsumi et al. 2013). 431 

 432 

The second group of genes is related to 7 different two-component regulatory systems 433 

(fig. 5D). This group was generally affected in response to adaptation to β-lactam and 434 

aminoglycoside antibiotics; whereby variation in mutated systems seem to depend on 435 

the antibiotic class. Two-component systems are essential for bacteria to recognize 436 

different environmental stimuli and coordinate a fine-tuned response via a complex 437 

phosphorylation signal transduction system (Hoch 2000; Robinson et al. 2000; Ramos 438 

et al. 2005). P. aeruginosa in particular possesses a large number of such regulatory 439 

systems, which it uses to control cellular division, development, stress responses, and 440 

pathogenicity (Rodrigue et al. 2000).  441 

 442 

The third main group of mutated genes was found in β-lactam and aminoglycoside 443 

adapted populations, and included different efflux regulatory systems (fig. 5D). These 444 

genes modulate the activity of distinct efflux pumps which can lead to single or multi-445 

drug resistance (Hancock and Speert 2000; Li et al. 2000; Poole 2001; Piddock 2006). 446 

Importantly, two of them (mexZ and nalC) are closely related to those regulating the tet 447 

efflux pumps (TetR-like repressors), which were previously demonstrated to contribute 448 

to collateral sensitivity against aminoglycosides in tetracycline resistant E. coli 449 

(reviewed in Baym, Stone, et al. 2016). These genes were further proposed as a pivotal 450 

group to be exploited in sequential treatment strategies (Baym, Stone, et al. 2016).  451 

 452 

We additionally identified changes in several other known or at least suggested 453 

antibiotic resistance genes (fig. 5D), including the membrane protein main component 454 

oprD, the DNA gyrase subunits gyrA and gyrB, as well as other genes involved in 455 

cellular processes such as cell division and motility (Macfarlane et al. 2000; Drenkard 456 

and Ausubel 2002; Livermore 2002; Amin et al. 2005). Our analysis further revealed 457 

changes in genes with currently unknown function and/or no previous implication in 458 

antibiotic resistance, and/or mutations in non-coding regions, which may still influence 459 
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resistance if regulatory regions are affected (e.g., possibly relevant for DOR-adapted 460 

populations). Some of these changes occurred at lower frequency within the replicate 461 

populations, but their exact contribution to the observed evolutionary pattern is 462 

uncertain and may be interesting to address in future studies. Furthermore, among the 463 

PIT-adapted populations we also found substantial variation in the sets of mutated 464 

genes, even though they almost all consistently affected the same two functional 465 

categories: peptidoglycan synthesis and efflux regulatory systems. This variation could 466 

explain the different levels of resistance observed for these populations, whereby 467 

different groups of mutated genes lead to higher or lower levels of resistance. 468 

 469 

Specific resistance mechanism associate with high growth costs 470 

The accumulation of multiple mutations during adaptation to antibiotics could translate 471 

into stronger reductions in fitness under drug-free conditions. In fact, in a similar study 472 

with E. coli, populations accumulating a large number of mutations or deletions had 473 

also very low fitness in drug-free environments (Lázár et al. 2014). Similarly, in P. 474 

aeruginosa we found that the populations with the strongest decrease in growth rate 475 

have a significantly larger number of mutations in their genomes (supplementary fig. 476 

S8A). However, none of the other measured fitness parameters correlated with the 477 

number of mutations, suggesting that this alone is not enough to explain the observed 478 

variation in fitness. Moreover, when we looked for overrepresented genes in 479 

populations with the most extreme growth costs, we observed some functions to be 480 

more prevalent than others (supplementary fig. S8B-D). In particular, genes involved 481 

in peptidoglycan synthesis (mpl, dacC or ftsI), regulation of efflux (nalC) or part of 482 

two-component regulatory systems (pmrB) were more frequently found in populations 483 

with lower relative fitness across the measured growth parameters. Interestingly, 484 

multiple genes affecting these cellular processes were found within the same 485 

populations having strong fitness reductions (nalC together with mpl and dacC were 486 

often found in PIT resistant populations). Altogether, the costs of adaptation seem to 487 

be dependent on both the number of mutations accumulated and the specific mutated 488 

resistance mechanism.  489 

 490 

Parallel patterns of collateral resistance across treatments is not linked to similar 491 

mutational profiles 492 
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Next, we assessed whether parallel mutational changes could explain the observed 493 

patterns of collateral resistance across different treatments in P. aeruginosa (Fig. 3B). 494 

In contrast to the findings for E. coli (Lázár et al. 2014), we found comparatively little 495 

mutational overlap between the populations from different antibiotic treatments 496 

(supplementary fig. S9A). Interestingly, in the few cases where similar mutational 497 

profiles were observed among populations resistant to different drugs, the two 498 

compared antibiotics appear to be chemically related, and the populations showed 499 

cross-resistance (supplementary fig. S9B and C). However, these correlations were not 500 

statistically significant, because our data set also included several populations with high 501 

cross-resistance against chemically similar drugs, but with completely distinct 502 

mutational profiles (supplementary fig. S9B and C). Therefore, it seems that the parallel 503 

patterns of cross-resistance across treatments are based on different sets of mutations.  504 

 505 

This is also true for populations from different treatments that adapted to drugs of the 506 

same class. For instance, the populations that adapted to the two aminoglycosides 507 

showed high levels of cross-resistance among them, but adaptation to GEN was more 508 

often accompanied by mutations in the two-component regulatory gene pmrB, while 509 

those adapted to STR predominantly showed mutations in genes involved in cellular 510 

division (i.e., gidA or gidB), or in efflux regulation (i.e., mexZ; fig. 5D and 511 

supplementary table S5).  512 

 513 

Contrasting collateral effects have unique genomic profiles 514 

We identified substantial variation in the incidence of collateral sensitivity and cross-515 

resistance within particular evolution experiments. For instance, five of the CEF 516 

adapted populations showed collateral sensitivity against GEN and STR, whereas the 517 

rest suffered cross-resistance or neutral effects against the same drugs (fig. 3B). 518 

Similarly, three of the GEN adapted populations displayed collateral sensitivity against 519 

CAR and PIT, while the others were resistant (fig. 3B). Such variation could be the 520 

result of distinct resistance mechanisms selected during adaptation to each drug, which 521 

in turn led to contrasting sensitivities against other antibiotics. To explore this 522 

possibility, we focused on four exemplary cases, for each of which we repeatedly found 523 

contrasting variation in collateral effects to other antibiotics. These included the 524 

populations adapted to the two aminoglycosides (GEN, STR), which both showed such 525 

variation towards PIT and CAR (Fig. 3B). We also considered the reverse two cases, 526 
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for which populations that had adapted to either PIT or CAR produced contrasting 527 

collateral patterns towards GEN and STR (Fig. 3B). For these four cases, we used 528 

hierarchical cluster analysis (based on Ward’s criterion method and bootstrapping to 529 

assess cluster stability (Murtagh and Legendre 2014)) to relate populations with varying 530 

collateral effects to corresponding genomic variation. In particular, we first assessed 531 

whether populations adapted to a given drug would cluster together based on their 532 

sensitivity against the two other antibiotics (fig. 6A, 6C, 6E, and 6G). Then, we asked 533 

whether the same populations would also cluster together based on their sets of mutated 534 

genes (fig. 6B, 6D, 6F, and 6H).  535 

 536 

 537 



 21 

Fig. 6. Genomic determinants of collateral sensitivity. We employed a hierarchical 538 

clustering analysis using the Ward’s criterion method and bootstrapping to identify the 539 

genomic determinants of variation in collateral profiles in four treatments. In two of 540 

these treatments, replicate populations that had adapted to either GEN (A,B) or STR 541 

(C,D) produced variation in collateral profile to PIT and CAR. In the other two 542 

treatments, replicate populations that had adapted to either PIT (E,F) or CAR (G,H) 543 

showed such variation towards GEN and STR. We first evaluated the clustering of 544 

populations adapted to GEN (A), STR (C), PIT (E) and CAR (G) based on the strength 545 

of collateral effects to the other two drugs (Fig. 3B), highlighting clusters of those with 546 

collateral sensitivity (lines in different shades of purple, see legend to the right) versus 547 

those with collateral resistance (lines in different shades of grey). The circled numbers 548 

always indicate the same replicate populations from a particular treatment across the 549 

related panels. Populations clustering together based on their collateral effects also 550 

often clustered together based on their genomic profile (B, D, F, H). The mutated genes 551 

present in the various clusters are given to the right of the dendrograms, followed by 552 

letters for their functional annotation in brackets (see legend to the right for the 553 

annotation categories). If a specific cluster mainly included populations associated with 554 

collateral sensitivity, then the gene names are given in purple. In cases, where clusters 555 

mainly included populations associated with collateral resistance, the gene name is 556 

given in green. 557 

 558 

We identified clusters that consistently link the contrasting patterns of collateral 559 

sensitivity to particular genomic variations. Intriguingly, the two-component regulatory 560 

system and TetR-like repressors appear to play a pivotal role in determining these 561 

patterns. For the GEN-adapted populations, sensitivity to PIT and CAR was associated 562 

with mutations in pmrB (fig. 6A and 6B), a sensor kinase implicated in resistance 563 

against cationic antimicrobial peptides, polymyxins, and aminoglycosides in 564 

Salmonella and P. aeruginosa (McPhee et al. 2003). Aminoglycoside resistance 565 

mediated by pmrB is hierarchically controlled by two regulatory systems (PhoP-PhoQ 566 

and PmrB-PmrA) that ultimately remodel lipid A in the outer membrane resulting in a 567 

reduction of the membrane’s negative charge. Such alterations were shown to enhance 568 

sensitivity to β-lactams in aminoglycoside resistant E. coli (Lázár et al. 2013; Baym, 569 

Stone, et al. 2016). Altogether, this suggests that pmrB could be the main driver of β-570 

lactam sensitivity in GEN resistant populations.  571 
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 572 

Collateral sensitivity against penicillins in STR-adapted populations is linked to 573 

mutations in the gene mexZ (fig. 6C and D), a TetR-like repressor modulating the 574 

expression of the MexXY-OprM efflux system (Aires et al. 1999). This gene was found 575 

to mediate aminoglycoside resistance in P. aeruginosa PAO1 and clinical isolates from 576 

cystic fibrosis patients by increasing cellular drug efflux, trough an up-regulation of the 577 

mexXY genes (Westbrock-Wadman et al. 1999). Interestingly, in P. aeruginosa, 578 

extrusion of the aminoglycosides appears to be exclusively mediated by MexXY-579 

OprM, which, when overexpressed, is also able to extrude most penicillins (except for 580 

carbenicillin and sulbenicillin), some cephalosporins, and meropenem (Masuda et al. 581 

2000). However, to the best of our knowledge, its possible role in mediating collateral 582 

sensitivity against penicillins has not been reported before. In addition, the expression 583 

of collateral sensitivity could be further influenced by other mutations. For instance, a 584 

mutation in motB, a gene required for flagellar motility in P. aeruginosa (Doyle et al. 585 

2004), is present in addition to mutated mexZ in population 10, which shows collateral 586 

sensitivity to CAR but not PIT (fig. 6C and 6D).  587 

 588 

In the case of the penicillin-adapted populations, collateral sensitivity against 589 

aminoglycosides appears to be associated – among others – with mutations in the gene 590 

nalC, an efflux regulator of the MexAB-OprM system known to confer intermediate to 591 

high levels of resistance to multiple drugs (Cao et al. 2004). Populations adapted to 592 

CAR and PIT with mutations in this gene consistently showed a more sensitive 593 

phenotype against both aminoglycosides (fig. 6E-H). Interestingly, tet efflux regulators, 594 

which are related in their function to nalC, were previously shown to mediate collateral 595 

sensitivity against aminoglycosides in tetracycline resistant E. coli (reviewed in Baym, 596 

Stone, et al. 2016), thus suggesting a pivotal role of this type of resistance mechanism 597 

in determining antibiotic susceptibility trade-offs. 598 

 599 

It is noteworthy that the exact distribution of the variation in sensitivity against 600 

aminoglycosides in CAR-adapted populations is not well captured by our approach. All 601 

the identified clusters show genomic changes that affect the same three functions, yet 602 

the exact mutations and their frequencies within the populations differ (fig. 6G and H, 603 

supplementary fig. S10 and supplementary table S5). The observed phenotypic 604 

variation may then be caused by only some of the variable genes, by specific mutations 605 
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only, by the combination of specific allelic variants, or by the frequency difference of 606 

certain mutations. Therefore, the observed collateral effects are likely influenced by 607 

additional factors, which could not be identified directly by the cluster analysis. 608 

 609 

Mutations in nalC, mexZ, and pmrB can cause collateral sensitivity 610 

Different regulatory systems were generally associated with collateral sensitivities in 611 

the evaluated populations. To further evaluate such a role, we assessed antibiotic 612 

sensitivity in genetically modified ancestral PA14, in which we re-introduced a 613 

selection of four of the identified mutational changes (Materials and methods), namely 614 

the inferred ~500 bp deletion in nalC, a SNP in mexZ leading to an early stop codon 615 

(Q95stop), and two non-synonymous mutations in pmrB causing a P254L and a V136E 616 

amino acid substitution. In all cases, the constructed mutants showed almost the exact 617 

same response as the evolved populations against at least two of the considered 618 

antibiotics (fig. 7 and supplementary table S6). In particular, the SNPs introduced in 619 

pmrB and mexZ, originally observed in the GEN- and STR-adapted populations, caused 620 

high resistance to these aminoglycosides, and led to significantly increased sensitivity 621 

to the penicillins PIT and CAR (fig. 7; supplementary table S6). Similarly, the 622 

introduced deletion in nalC, originally observed in CAR-adapted populations, caused 623 

resistance to the tested penicillins while significantly increasing sensitivity to both GEN 624 

and STR (fig. 7; supplementary table S6). Thus, two-component regulatory systems 625 

and efflux regulators can be responsible for the observed collateral sensitivity in P. 626 

aeruginosa.  627 

 628 
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 629 

Fig. 7. Functional analysis of different regulatory genes. We focused on four specific 630 

mutations identified in the evolved populations to associate with collateral sensitivity 631 

and introduced these into the ancestral PA14 strain. The resulting mutants were then 632 

tested against various concentrations of CAR, PIT, GEN and CAR (from left to right). 633 

In all cases, the ancestral PA14 (always in black) and the adapted population (always 634 

in darker colors), from which the particular mutation was extracted, were tested 635 

simultaneously with the corresponding constructed mutants. Points and error bars show 636 

the mean OD ± SD of 5 technical replicates per antibiotic concentration. For each set 637 

of bacterial populations challenged against a particular drug we performed a GLM 638 

followed by Tukey’s honest significant difference (HSD) test. For a summary of the 639 

statistical results see supplementary table S5. 640 

 641 

The tested genes nalC, mexZ, and pmrB are involved in the regulation of efflux pumps 642 

or alteration of the outer membrane, and can thus influence antibiotic resistance 643 

(Westbrock-Wadman et al. 1999; McPhee et al. 2003; Cao et al. 2004; Daigle et al. 644 

2007; Lázár et al. 2013; Baym, Stone, et al. 2016). To the best of our knowledge, the 645 

results of our functional genetic analysis demonstrated for the first time in P. 646 
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aeruginosa that such genes can also differentially lead to collateral sensitivity against 647 

aminoglycosides (nalC) and penicillins (mexZ and pmrB). Importantly, two distinct 648 

aminoglycoside resistance mechanisms independently led to penicillin 649 

hypersensitivity: a loss of function (LOF) mutation in mexZ, and two different non-650 

synonymous mutations in the two-component regulatory system gene pmrB. 651 

Intriguingly, contrasting collateral effects emerged from alterations in functionally 652 

related genes: both mexZ and nalC are from the TetR-family of repressors, and LOF 653 

mutations in each of them led to completely opposite susceptibilities against penicillins 654 

and aminoglycosides. Such contrasting results could be due to an impairment of one of 655 

the efflux pumps upon up-regulation of the other, a phenomenon previously seen in 656 

other efflux systems such as MexCD and MexAB, or MexEF and MexAB (Gotoh et al. 657 

1998; Maseda et al. 2000; Jeannot et al. 2008), but not between MexXY and MexAB. 658 

 659 

Conclusions 660 

 661 

We here demonstrated that P. aeruginosa adapts rapidly to high-level antibiotic stress 662 

and that such adaptation may influence resistance against other antibiotics. Cross-663 

resistance correlates well with chemical similarity of the antibiotics, in agreement with 664 

previous work. Collateral sensitivity was identified in several cases, yet different in 665 

direction to those cases previously reported for other bacteria, such as E. coli. 666 

Surprisingly, adaptation to a particular antibiotic produced both cross-resistance and 667 

collateral sensitivity across the replicate populations. Our genomic analysis suggests 668 

that alternative mechanisms were favored during resistance evolution, which then 669 

resulted in these contrasting cross-resistance patterns. Intriguingly, regulatory systems 670 

appear to play a key role in mediating the observed collateral effects. Functional genetic 671 

analysis revealed that four of the identified mutations in three regulatory genes (nalC, 672 

mexZ, and pmrB) can indeed cause collateral sensitivities in P. aeruginosa. Overall, we 673 

expect our results to help the development of novel antibiotic therapy that exploits 674 

fitness trade-offs during drug resistance evolution. 675 

 676 

  677 
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Materials and methods 678 

Bacteria and media 679 

All experiments were conducted with Pseudomonas aeruginosa PA14. Cells were 680 

grown at 37°C in sterile M9 minimal medium supplemented with 0.2% glucose and 681 

0.1% casamino acids. All antibiotics were prepared according to manufacturer’s 682 

instructions (Table 1). All experiments were carried out in 96-well plates shaken and 683 

incubated at 37°C for 12h and treatments being randomized across each plate. After 684 

12h of growth, optical density (OD) measurements were taken in BioTek plate readers. 685 

Randomization schemes of plates for each experiment were different from each other.  686 

 687 

Selection of highly resistant mutants 688 

We challenged 20 isogenic populations of PA14 against increasing concentrations of 689 

each of the studied antibiotics (160 populations in total; Fig. 1A). As a control for the 690 

adaptation to growth in medium without antibiotics we also included 20 populations 691 

growing in M9 only, resulting in a total of 180 populations. Experiments were initiated 692 

with half the antibiotic concentration that causes growth inhibition of at least 90% 693 

(IC90) for each drug in a final volume of 100µl per well. Every 12h 50% volume was 694 

transferred into a freshly prepared plate. Every fourth transfer (4 generations), OD was 695 

measured and the antibiotic concentration was increased 1.5 times. Experiments were 696 

concluded when reaching ~40 times the IC90 (48 transfers) or when 10 or less of the 697 

20 populations had reached extinction. Whenever the antibiotic concentration was 698 

increased, the preceding plates were frozen at -80°C in 1:4 (v/v) of 86% glycerol. 699 

 700 

Fitness measurements 701 

All evolved populations were grown overnight (ON) at 37˚C and 180rpm in M9 media 702 

with the corresponding antibiotic they were adapted to. Cultures were then centrifuged, 703 

washed with fresh M9 media and diluted in 100µl of M9 without any drug to a starting 704 

OD of 0.08 (~105 CFU/mL). For each population, 4 technical replicates were 705 

considered, and then incubated inside a plate reader at 37˚C for 24h. Within the plate 706 

reader, OD measurements were taken at regular intervals of 15 min, for a total of 96 707 

measurements per population and replicate. The collected growth data was then 708 

analyzed using the R package ‘grofit’ to obtain three growth parameters: growth rate, 709 

length of lag time, and maximum yield. We standardized the fitness of each population 710 

relative to the mean of the evolved controls (adapted to M9 media only).   711 
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 712 

Collateral sensitivity and resistance assays 713 

We measured collateral effects for the experimentally evolved populations with high 714 

levels of resistance. We tested these populations and also the ancestral PA14 against 10 715 

different concentrations of a given antibiotic in randomized order (each concentration 716 

was replicated 3 times; total of 21120 concentration and population combinations). To 717 

quantify the change in resistance or sensitivity we first considered growth relative to 718 

the no-drug environment in order to account for differences in fitness defects among 719 

populations originated after adaptation. We then calculated the area under the curve 720 

using a spline approximation of the ancestral PA14 and subtracted the one obtained for 721 

each population. Positive values reflect a higher cumulative growth at increasing 722 

concentrations in the population compared to the ancestor, thus indicating cross-723 

resistance; conversely, negative values represent collateral sensitivity. To derive 724 

significant sensitivity or resistance, we performed a Wilcox rank test for all populations 725 

adapted to a given environment when challenged against a given antibiotic, comparing 726 

significant differences from 0. P-values were adjusted for multiple testing using the 727 

false discovery rate, FDR (supplementary fig. S5). We subsequently asked how many 728 

cases of direct or indirect adaptation had occurred for each antibiotic. Direct adaptation 729 

considers how often adaptation to a given drug leads to resistance (or sensitivity) 730 

against other drugs, whilst indirect adaptation reflects how often adaptation to other 731 

drugs lead to resistance (or sensitivity) against a particular antibiotic. For example, we 732 

asked how many cases of resistance against all other drugs were observed upon 733 

adaptation to CIP (direct adaptation); as well as how many cases of resistance against 734 

CIP were found upon adaptation to any other drug (indirect adaptation).  735 

 736 

Chemical similarity 737 

We inferred chemical relatedness as previously described by using the Jaccard’s 738 

similarity index contrasting the chemical fingerprints of all antimicrobial compounds 739 

used here (Lázár et al. 2014). We then correlated these pairwise comparisons to the 740 

frequency of cross-resistance calculated by: 741 

 742 

, 743 

 744 

FCR= RA®B + RB®A( ) / LAB
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where RAB is the number of populations resistant to drug A with cross-resistance to 745 

drug B, RBA is the number of populations resistant to drug B with cross-resistance to 746 

A, and LAB is the total number of populations adapted to A and B. 747 

 748 

 749 

DNA extraction  750 

To identify the genetic changes leading to high-level resistance evolution, we 751 

sequenced full genomes for whole populations of the ancestral P. aeruginosa PA14, 10 752 

evolved controls and 71 populations adapted to different drugs. Frozen material from 753 

all populations was thawed, and 10µl of each were transferred into 15 ml of M9 minimal 754 

medium with the corresponding antibiotic. All populations were shaken and incubated 755 

at 37˚C ON. DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen, 756 

Hilden, Germany) following manufacturer’s recommendations for Gram-negative 757 

bacteria. Eighty-one populations in total were sequenced at the Institute for Clinical 758 

Microbiology, Kiel University Hospital, using the Illumina HiSeq paired-end 759 

technology (Bentley et al. 2008) with an insert size of 150bp and 300x coverage. 760 

 761 

Genomic analysis 762 

We employed an established pipeline encoded in serial bash and Perl scripts used 763 

previously for the genomic analysis of P. aeruginosa PA14 (Jansen et al. 2015). Briefly, 764 

reads with unreliable quality were removed using Skewer (Jiang et al. 2014). Samples 765 

were then mapped to the published P. aeruginosa_UCBPP_PA14_uid57977 reference 766 

genome available at 767 

(ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_aeruginosa_UCBPP_PA14_u768 

id57977). Mapping was performed using bwa and samtools (Li et al. 2009; Li and 769 

Durbin 2010) and then visually inspected for low-quality areas using IGV (Integrated 770 

genome viewer, Broad Institute; www.broadinstitute.org/software/igv/).  771 

 772 

Duplicated regions were removed for single nucleotide polymorphisms and structural 773 

variant calling (SNPs and SV) using MarkDuplicates in Picardtools 774 

(http://picard.source-forge.net). To call SNPs and small indels above a threshold 775 

frequency of 0.1 and base quality above 20 we employed both frequentist and heuristic 776 

methods using respectively SNVer and VarScan (Wei et al. 2011; Koboldt et al. 2012). 777 
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To identify larger indels and other SV, we used Pindel and CNVnator (Ye et al. 2009; 778 

Abyzov et al. 2011). The resulting output files were filtered for duplicates, ancestral 779 

variants, and variants found in the evolved controls. We used a combination of sources 780 

to identify and annotate the variants using snpEff (Cingolani et al. 2012), DAVID, the 781 

Pseudomonas database (available online at: http://pseudomonas.com) and information 782 

from published work. Further count statistics, analysis and visualizations were done in 783 

the R platform (R Core Team). 784 

 785 

Mutational diversity was calculated as in (Chevereau et al. 2015). Briefly, we calculated 786 

the entropy , where pj is the probability that a 787 

given locus j is mutated in a random population. H then measures the diversity of 788 

mutated loci in the populations adapted to a given drug. Standard error was obtained 789 

from jackknife resampling in the R platform.  790 

 791 

In order to link the observed collateral effects to the underlying genetic changes we 792 

performed a hierarchical clustering analysis. For this, we focused on four treatments, 793 

which repeatedly produced contrasting patterns of collateral effects. These included 794 

populations adapted to either GEN or STR (the two aminoglycosides), which produced 795 

variation in their collateral profiles towards PIT and CAR. We also considered the 796 

reverse two cases, for which replicated populations that had adapted to PIT and CAR 797 

showed contrasting patterns of collateral effects towards GEN and STR. For these four 798 

cases, we first obtained the Euclidean similarity of the sensitivities of evolved 799 

populations against the considered drugs. Then we used hierarchical clustering based 800 

on Ward’s minimum variance method, including the Ward’s criterion, which aims at 801 

finding compact, spherical clusters, and combined it with bootstrapping to asses cluster 802 

stability (Murtagh and Legendre 2014). The same process was then used to infer 803 

clusters based on the genomic profiles of the same populations, including only genes 804 

with mutations within their coding regions. For each antibiotic we then built 805 

dendograms for the clustering results and assessed to what extent given genomic 806 

clusters coincided with clusters having collateral resistance or sensitivity phenotypes.  807 

 808 

The obtained genome sequences are available from NCBI SRA database under the 809 

BioProject number: PRJNA355367. 810 

H = - [pj (log2 pj + (1- pj log2(1- pj )]å
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 811 

P. aeruginosa PA14 genome editing 812 

Deletion of nalC and single nucleotide mutations in pmrB and mexZ were performed in 813 

P. aeruginosa PA14 based on a two-step recombination method previously described 814 

(Trebosc et al. 2016). DNA fragments corresponding to 700-bp up- and downstream of 815 

the nalC region to be deleted (position 1,391,565-1,390,977 on PA14 genome, 816 

GenBank CP000438.1) were amplified by PCR using primers oVT464/oVT465 and 817 

oVT466/oVT467, respectively. The resulting DNA fragments were introduced into 818 

pVT77 previously digested with EcoRI/XbaI using NEBuilder HiFi DNA assembly 819 

(New England Biolabs). For the allelic replacement of wildtype pmrB and mexZ, 1.4-820 

kb DNA fragments were amplified by PCR using primers oVT468/469, oVT470/471 821 

and oVT472/473 on the evolved populations GEN-3, GEN-10, and STR-2, which 822 

respectively contained the PmrB_V136E, PmrB_P254L and MexZ_Q95stop 823 

mutations. The resulting DNA fragments were cloned into pVT77, digested with 824 

EcoRI/XbaI, using NEBuilder HiFi DNA assembly. 825 

 826 

The obtained plasmids were transformed into E. coli conjugative strains MFDpir or 827 

S17-1 and transferred into P. aeruginosa PA14 as described previously (Trebosc et al. 828 

2016). After conjugation, genomic plasmid integration was tested on LB agar plates 829 

containing 100 µg/ml sodium tellurite – when E. coli S17-1 was used additional 30 830 

µg/ml Chloramphenicol were added to selection plates to eradicate the E. coli cells. 831 

Plasmid integration into the PA14 genome was confirmed by PCR with primers oVT8 832 

and oVT474, oVT476, oVT478 and oVT480 for nalC deletion, PmrB V136E, PmrB 833 

P254L and MexZ Q95stop mutations, respectively. PA14 clones were transferred to 834 

LB agar plates containing 1 mM isopropyl-β-D-1-thiogalactopyranoside and 200 µg/ml 835 

3’-azido-3’-deoxythymidine to select for plasmid removal from the genome. Clones 836 

were screened by PCR using primers oVT474/oVT475, oVT476/oVT477, 837 

oVT478/oVT479 and oVT480/oVT481 for nalC deletion, PmrB V136E, PmrB P254L 838 

and MexZ Q95stop mutations, respectively. The genomic deletion and mutations were 839 

finally confirmed by DNA sequencing (Microsynth AG, Balgach, Switzerland). 840 

 841 

Table 2. Oligonucleotides used 842 

Oligo name Sequence (5’-3’) 

oVT8 GTTTTCCCAGTCACGACGC 
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oVT464 AGAATTGAGGCCTCTCGAGGAATTCTTAGAGGTCCCAGGCATTG 

oVT465 TGAGGAACAGGGTTTGCTGAGAGCGTTTC 

oVT466 TCAGCAAACCCTGTTCCTCAAGGCCCTC 

oVT467 CCGCAAGCTTCCTGCAGGCTCTAGACTGATGGAAACCTTTGCC 

oVT468 AGAATTGAGGCCTCTCGAGGAATTCTCGATCTCGACGAACTGC 

oVT469 CCGCAAGCTTCCTGCAGGCTCTAGACAACGACAGCTCGATGTC 

oVT470 AGAATTGAGGCCTCTCGAGGAATTCCTCTCGCTGAAGCAGGTG 

oVT471 CCGCAAGCTTCCTGCAGGCTCTAGAATCATCTTCGGCGTCAGTC 

oVT472 AGAATTGAGGCCTCTCGAGGAATTCTCCTGGCCTTCCTCGTAC 

oVT473 CCGCAAGCTTCCTGCAGGCTCTAGAAGGTAGGCGGAGAAAACG 

oVT474 TCTGCGCGGATTCTGATAGC 

oVT475 TCCCTGGAAATGCAGTGAGC 

oVT476 GACGACTACCTGACCAAGCC 

oVT477 CCTTCAGCCACAGGTCGATG 

oVT478 CGAGGTCCATGTCCATCACC 

oVT479 TCGTTCTCGTTGTAGTGGCG 

oVT480 CCTTGATCAGGTCGGCGTAG 

oVT481 AAGCTACCGTGACAGAACCC 
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