762 research outputs found

    Concave Switching in Single and Multihop Networks

    Full text link
    Switched queueing networks model wireless networks, input queued switches and numerous other networked communications systems. For single-hop networks, we consider a {(α,g\alpha,g)-switch policy} which combines the MaxWeight policies with bandwidth sharing networks -- a further well studied model of Internet congestion. We prove the maximum stability property for this class of randomized policies. Thus these policies have the same first order behavior as the MaxWeight policies. However, for multihop networks some of these generalized polices address a number of critical weakness of the MaxWeight/BackPressure policies. For multihop networks with fixed routing, we consider the Proportional Scheduler (or (1,log)-policy). In this setting, the BackPressure policy is maximum stable, but must maintain a queue for every route-destination, which typically grows rapidly with a network's size. However, this proportionally fair policy only needs to maintain a queue for each outgoing link, which is typically bounded in number. As is common with Internet routing, by maintaining per-link queueing each node only needs to know the next hop for each packet and not its entire route. Further, in contrast to BackPressure, the Proportional Scheduler does not compare downstream queue lengths to determine weights, only local link information is required. This leads to greater potential for decomposed implementations of the policy. Through a reduction argument and an entropy argument, we demonstrate that, whilst maintaining substantially less queueing overhead, the Proportional Scheduler achieves maximum throughput stability.Comment: 28 page

    Genome of Drosophila suzukii, the spotted wing drosophila.

    Get PDF
    Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relatives. Our analyses and genome annotations are presented in a web portal, SpottedWingFlyBase, to facilitate public access

    Fate and Transport of Steroid Hormones and Veterinary Antibiotics Derived from Cattle Farms

    Get PDF
    Concentrated animal feeding operations (CAFOs) have been identified as one of the most important sources for the release of animal hormones and veterinary antibiotics into the aquatic environment. Funded by a USDA research grant, Dr. Wei Zheng set out to identify and quantify the environmental fate and transport of several commonly-occurring steroid hormones, veterinary antibiotics, and their metabolites. Findings were published in the following papers: Xiaolin Li, Wei Zheng, Michael L. Machesky, Scott R. Yates, and Michael Katterhenry (2011). Journal of Agricultural and Food Chemistry 2011 59 (18), 10176-10181 DOI: 10.1021/jf202325c Wei Zheng, Xiaolin Li, Scott R. Yates, and Scott A. Bradford (2012). Environmental Science & Technology 46 (10), 5471-5478. DOI: 10.1021/es301551h Xiaolin Li, Wei Zheng, Walton R. Kelly (2013). Science of the Total Environment 445-446, 22-28. DOI: 10.1016/j.scitotenv.2012.12.035 Wei Zheng, Yonghong Zou, Xiaolin Li, Michael L. Machesky (2013). Journal of Hazardous Materials 258-259, 109-115. DOI: 10.1016/j.jhazmat.2013.04.038 Yonghong Zou and Wei Zheng Environmental Science & Technology 2013 47 (10), 5185-5192 DOI: 10.1021/es400624w.U.S. Department of AgricultureOpe

    London Hybrid Exposure Model: Improving Human Exposure Estimates to NO2 and PM2.5 in an Urban Setting.

    Get PDF
    Here we describe the development of the London Hybrid Exposure Model (LHEM), which calculates exposure of the Greater London population to outdoor air pollution sources, in-buildings, in-vehicles, and outdoors, using survey data of when and where people spend their time. For comparison and to estimate exposure misclassification we compared Londoners LHEM exposure with exposure at the residential address, a commonly used exposure metric in epidemiological research. In 2011, the mean annual LHEM exposure to outdoor sources was estimated to be 37% lower for PM2.5 and 63% lower for NO2 than at the residential address. These decreased estimates reflect the effects of reduced exposure indoors, the amount of time spent indoors (∼95%), and the mode and duration of travel in London. We find that an individual's exposure to PM2.5 and NO2 outside their residential address is highly correlated (Pearson's R of 0.9). In contrast, LHEM exposure estimates for PM2.5 and NO2 suggest that the degree of correlation is influenced by their exposure in different transport modes. Further development of the LHEM has the potential to increase the understanding of exposure error and bias in time-series and cohort studies and thus better distinguish the independent effects of NO2 and PM2.5

    Associations between sources of particle number and mortality in four European cities

    Get PDF
    BACKGROUND: The evidence on the association between ultrafine (UFP) particles and mortality is still inconsistent. Moreover, health effects of specific UFP sources have not been explored. We assessed the impact of UFP sources on daily mortality in Barcelona, Helsinki, London, and Zurich. METHODS: UFP sources were previously identified and quantified for the four cities: daily contributions of photonucleation, two traffic sources (fresh traffic and urban, with size mode around 30 nm and 70 nm, respectively), and secondary aerosols were obtained from data from an urban background station. Different periods were investigated in each city: Barcelona 2013-2016, Helsinki 2009-2016, London 2010-2016, and Zurich 2011-2014. The associations between total particle number concentrations (PNC) and UFP sources and daily (natural, cardiovascular [CVD], and respiratory) mortality were investigated using city-specific generalized linear models (GLM) with quasi-Poisson regression. RESULTS: We found inconsistent results across cities, sources, and lags for associations with natural, CVD, and respiratory mortality. Increased risk was observed for total PNC and natural mortality in Helsinki (lag 2; 1.3% [0.07%, 2.5%]), CVD mortality in Barcelona (lag 1; 3.7% [0.17%, 7.4%]) and Zurich (lag 0; 3.8% [0.31%, 7.4%]), and respiratory mortality in London (lag 3; 2.6% [0.84%, 4.45%]) and Zurich (lag 1; 9.4% [1.0%, 17.9%]). A similar pattern of associations between health outcomes and total PNC was followed by the fresh traffic source, for which we also found the same associations and lags as for total PNC. The urban source (mostly aged traffic) was associated with respiratory mortality in Zurich (lag 1; 12.5% [1.7%, 24.2%]) and London (lag 3; 2.4% [0.90%, 4.0%]) while the secondary source was associated with respiratory mortality in Zurich (lag 1: 12.0% [0.63%, 24.5%]) and Helsinki (4.7% [0.11%, 9.5%]). Reduced risk for the photonucleation source was observed for respiratory mortality in Barcelona (lag 2, -8.6% [-14.5%, -2.4%]) and for CVD mortality in Helsinki, as this source is present only in clean atmospheres (lag 1, -1.48 [-2.75, -0.21]). CONCLUSIONS: We found inconsistent results across cities, sources and lags for associations with natural, CVD, and respiratory mortality

    Effects of air pollution and the introduction of the London Low Emission Zone on the prevalence of respiratory and allergic symptoms in schoolchildren in East London: a sequential cross-sectional study

    Get PDF
    The adverse effects of traffic-related air pollution on children’s respiratory health have been widely reported, but few studies have evaluated the impact of traffic-control policies designed to reduce urban air pollution. We assessed associations between traffic-related air pollutants and respiratory/allergic symptoms amongst 8–9 year-old schoolchildren living within the London Low Emission Zone (LEZ). Information on respiratory/allergic symptoms was obtained using a parent-completed questionnaire and linked to modelled annual air pollutant concentrations based on the residential address of each child, using a multivariable mixed effects logistic regression analysis. Exposure to traffic-related air pollutants was associated with current rhinitis: NOx (OR 1.01, 95% CI 1.00–1.02), NO2 (1.03, 1.00–1.06), PM10 (1.16, 1.04–1.28) and PM2.5 (1.38, 1.08–1.78), all per μg/m3 of pollutant, but not with other respiratory/allergic symptoms. The LEZ did not reduce ambient air pollution levels, or affect the prevalence of respiratory/allergic symptoms over the period studied. These data confirm the previous association between traffic-related air pollutant exposures and symptoms of current rhinitis. Importantly, the London LEZ has not significantly improved air quality within the city, or the respiratory health of the resident population in its first three years of operation. This highlights the need for more robust measures to reduce traffic emissions

    Life Study Scientific Protocol

    Get PDF

    Air pollution, ethnicity and telomere length in east London schoolchildren: An observational study

    Get PDF
    This study was funded/supported by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London, Dr. and Mrs. Lee Iu Cheung Fund, and Hackney Primary Care Trust (PCT)
    • …
    corecore