23 research outputs found

    Fingerprinting redox and ligand states in haemprotein crystal structures using resonance Raman spectroscopy

    Get PDF
    It is crucial to assign the correct redox and ligand states to crystal structures of proteins with an active redox centre to gain valid functional information and prevent the misinterpretation of structures. Single-crystal spectroscopies, particularly when appliedin situat macromolecular crystallography beamlines, allow spectroscopic investigations of redox and ligand states and the identification of reaction intermediates in protein crystals during the collection of structural data. Single-crystal resonance Raman spectroscopy was carried out in combination with macromolecular crystallography on Swiss Light Source beamline X10SA using cytochromec′ fromAlcaligenes xylosoxidans. This allowed the fingerprinting and validation of different redox and ligand states, identification of vibrational modes and identification of intermediates together with monitoring of radiation-induced changes. This combined approach provides a powerful tool to obtain complementary data and correctly assign the true oxidation and ligand state(s) in redox-protein crystals.</jats:p

    Компьютерные технологии проведения практических занятий по электротехнике

    Get PDF
    The paper gives the rationale behind the methodological approach of conducting practical training on electrical engineering. The approach features extensive guidance on students ' preliminary extra-curricular work in the process of preparation for the classes (drawing up schemes and graphs, chain calculation, etc.) The extra-curricular work is followed by the computer analysis of the chain along with the comparison of the result

    Recent structural insights into the function of copper nitrite reductases.

    Get PDF
    Copper nitrite reductases (CuNiR) carry out the first committed step of the denitrification pathway of the global nitrogen cycle, the reduction of nitrite (NO2(-)) to nitric oxide (NO). As such, they are of major agronomic and environmental importance. CuNiRs occur primarily in denitrifying soil bacteria which carry out the overall reduction of nitrate to dinitrogen. In this article, we review the insights gained into copper nitrite reductase (CuNiR) function from three dimensional structures. We particularly focus on developments over the last decade, including insights from serial femtosecond crystallography using X-ray free electron lasers (XFELs) and from the recently discovered 3-domain CuNiRs

    The Interdomain Linker of AAV-2 Rep68 Is an Integral Part of Its Oligomerization Domain: Role of a Conserved SF3 Helicase Residue in Oligomerization

    Get PDF
    The four Rep proteins of adeno-associated virus (AAV) orchestrate all aspects of its viral life cycle, including transcription regulation, DNA replication, virus assembly, and site-specific integration of the viral genome into the human chromosome 19. All Rep proteins share a central SF3 superfamily helicase domain. In other SF3 members this domain is sufficient to induce oligomerization. However, the helicase domain in AAV Rep proteins (i.e. Rep40/Rep52) as shown by its monomeric characteristic, is not able to mediate stable oligomerization. This observation led us to hypothesize the existence of an as yet undefined structural determinant that regulates Rep oligomerization. In this document, we described a detailed structural comparison between the helicase domains of AAV-2 Rep proteins and those of the other SF3 members. This analysis shows a major structural difference residing in the small oligomerization sub-domain (OD) of Rep helicase domain. In addition, secondary structure prediction of the linker connecting the helicase domain to the origin-binding domain (OBD) indicates the potential to form α-helices. We demonstrate that mutant Rep40 constructs containing different lengths of the linker are able to form dimers, and in the presence of ATP/ADP, larger oligomers. We further identified an aromatic linker residue (Y224) that is critical for oligomerization, establishing it as a conserved signature motif in SF3 helicases. Mutation of this residue critically affects oligomerization as well as completely abolishes the ability to produce infectious virus. Taken together, our data support a model where the linker residues preceding the helicase domain fold into an α-helix that becomes an integral part of the helicase domain and is critical for the oligomerization and function of Rep68/78 proteins through cooperative interaction with the OBD and helicase domains

    Ultrafast structural changes direct the first molecular events of vision

    Get PDF
    視覚に関わるタンパク質の超高速分子動画 --薄暗いところで光を感じる仕組み--. 京都大学プレスリリース. 2023-03-23.Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs). A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation, thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation

    The Oligomeric properties of the Adeno-Associated Virus Rep68 reflect its multifunctionality

    No full text
    The adeno-associated virus (AAV) encodes four regulatory proteins called Rep. The large AAV Rep proteins Rep68 and Rep78 are essential factors required in almost every step of the viral life cycle. Structurally, they share two domains: a modified version of the AAA(+) domain that characterizes the SF3 family of helicases and an N-terminal domain that binds DNA specifically. The combination of these two domains imparts extraordinary multifunctionality to work as initiators of DNA replication and regulators of transcription, in addition to their essential role during site-specific integration. Although most members of the SF3 family form hexameric rings in vitro, the oligomeric nature of Rep68 is unclear due to its propensity to aggregate in solution. We report here a comprehensive study to determine the oligomeric character of Rep68 using a combination of methods that includes sedimentation velocity ultracentrifugation, electron microscopy, and hydrodynamic modeling. We have determined that residue Cys151 induces Rep68 to aggregate in vitro. We show that Rep68 displays a concentration-dependent dynamic oligomeric behavior characterized by the presence of two populations: one with monomers and dimers in slow equilibrium and a second one consisting of a mixture of multiple-ring structures of seven and eight members. The presence of either ATP or ADP induces formation of larger complexes formed by the stacking of multiple rings. Taken together, our results support the idea of a Rep68 molecule that exhibits the flexible oligomeric behavior needed to perform the wide range of functions occurring during the AAV life cycle

    Ligand channel in pharmacologically stabilized rhodopsin

    No full text
    In the degenerative eye disease retinitis pigmentosa (RP), protein misfolding leads to fatal consequences for cell metabolism and rod and cone cell survival. To stop disease progression, a therapeutic approach focuses on stabilizing inherited protein mutants of the G protein-coupled receptor (GPCR) rhodopsin using pharmacological chaperones (PC) that improve receptor folding and trafficking. In this study, we discovered stabilizing nonretinal small molecules by virtual and thermofluor screening and determined the crystal structure of pharmacologically stabilized opsin at 2.4 Å resolution using one of the stabilizing hits (S-RS1). Chemical modification of S-RS1 and further structural analysis revealed the core binding motif of this class of rhodopsin stabilizers bound at the orthosteric binding site. Furthermore, previously unobserved conformational changes are visible at the intradiscal side of the seven-transmembrane helix bundle. A hallmark of this conformation is an open channel connecting the ligand binding site with the membrane and the intradiscal lumen of rod outer segments. Sufficient in size, the passage permits the exchange of hydrophobic ligands such as retinal. The results broaden our understanding of rhodopsin’s conformational flexibility and enable therapeutic drug intervention against rhodopsin-related retinitis pigmentosa.ISSN:0027-8424ISSN:1091-649

    Effect of Linker replacement in Rep68 oligomerization.

    No full text
    <p>Comparison of sedimentation profiles of Rep68 and Rep68<sub>octlink</sub> proteins. (A) Rep68 sediments as a major peak at ∼13S. (B) Rep68<sub>octlink</sub> sediments as a monomer with sedimentation coefficient of 3.5S. (C) Rep68<sub>octlink</sub> in presence of 5 mM ATP sediments in two peaks corresponding to monomer and dimer species. Protein concentration was kept constant at 25 µM in buffer containing 200 mM NaCl. Sedimentation velocity experiments were run at 40000 rpm and 20°C. Data was collected using the interference system.</p

    Structural comparison of SF3 helicase structures.

    No full text
    <p>(A) Ribbon representation of SF3 helicases AAV-2 Rep40, PV-E1 and SV40-LTag. Salmon color depicts the oligomerization domain (OD). Blue color represents the AAA<sup>+</sup> domain. (B) PV-E1 dimer showing the residues participating in the formation of the oligomerization interface colored in red and blue. (C) Structural alignment of the OD domain of AAV-2 Rep40 (Green), BPV-E1(Blue) and SV40-LTag(Magenta).</p

    Effect of Y224 mutation on AAV-2 virus liability.

    No full text
    <p>Comparison of the production of rAAV2-GFP infectious particles in presence of wt (squares) or Y224A Rep (triangles). rAAV2-GFP particles were produced in 293T cells in presence of wt or Y224A Rep. Varying volumes of crude lysate (in µl, x-axis) were added to HeLa cells and the percentage GFP positive -infected- cells was determined by FACS analysis. Data from four experiments are represented as mean ± s.e.m.</p
    corecore