169 research outputs found

    Toward Guidelines for Harvest Intensities and Regeneration Targets with Minimal Impact Upon Retained Genetic Diversity in Central Hardwood Tree Species

    Get PDF
    There is an urgent need for a coordinated and systematic approach to the in situ conservation of the genetic resources of commercially important forest tree species in the Central Hardwoods. Effective in situ management of genetic resources would benefit from clear guidelines for how many adult trees can be harvested with minimal impact on allelic diversity. We are constructing a computer model for this purpose, and present preliminary results based upon replicate harvests of a virtual forest stand consisting of 200 adult trees. Our model explores how much regeneration is needed so that there is no more than a 10 percent risk of retaining less than 90 percent of the original allelic diversity. In the absence of regeneration, up to 55 percent of the adult trees can be harvested without exceeding the 10 percent risk level. At higher harvest intensities, locally-derived regeneration is needed to replace the alleles removed from the adult population. When all 200 adult trees are harvested, the 10 percent risk level is not exceeded if there are at least 116 regenerants, provided that these are derived from pre-harvest random mating among the adults. In the presence of substantial pollen flow from a genetically differentiated outside pollen source (e.g., 10-20 percent pollen flow), the minimum amount of regeneration needed is reduced. This indicates that outside pollen can be more efficient, relative to pollen from within the stand, at replacing alleles lost from the adult population

    Diet-Morphology Correlations in the Radiation of South American Geophagine Cichlids (Perciformes: Cichlidae: Cichlinae)

    Get PDF
    Genera within the South American cichlid tribe Geophagini display specialized feeding and reproductive strategies, with some taxa specialized for both substrate-sifting and mouth brooding. Several lineages within the clade also possess an epibranchial lobe (EBL), a unique pharyngeal structure that has been proposed to have a function in feeding and/or mouth brooding. A recently published genus-level phylogeny of Neotropical cichlids was used as the evolutionary framework for investigating the evolution of morphological features presumably correlated with diet and mouth brooding in the tribe Geophagini. We tested for possible associations between the geophagine epibranchial lobe and benthic feeding and mouth brooding. We also addressed whether the EBL may be associated with unique patterns of diversification in certain geophagine clades. Tests of binary character correlations revealed the EBL was significantly associated with mouth brooding. We also tested for a relationship between diet and morphology. We analyzed stomach contents and morphometric variation among 21 species, with data for two additional species obtained from the literature. Principal Components Analysis revealed axes of morphological variation significantly correlated with piscivory and benthivory, and both morphology and diet were significantly associated with phylogeny. These results suggest that the EBL could be an adaptation for either feeding or mouth brooding. The EBL, however, was not associated with species richness or accelerated rates of phyletic diversification

    Synthetic Sample Selection via Reinforcement Learning

    Full text link
    Synthesizing realistic medical images provides a feasible solution to the shortage of training data in deep learning based medical image recognition systems. However, the quality control of synthetic images for data augmentation purposes is under-investigated, and some of the generated images are not realistic and may contain misleading features that distort data distribution when mixed with real images. Thus, the effectiveness of those synthetic images in medical image recognition systems cannot be guaranteed when they are being added randomly without quality assurance. In this work, we propose a reinforcement learning (RL) based synthetic sample selection method that learns to choose synthetic images containing reliable and informative features. A transformer based controller is trained via proximal policy optimization (PPO) using the validation classification accuracy as the reward. The selected images are mixed with the original training data for improved training of image recognition systems. To validate our method, we take the pathology image recognition as an example and conduct extensive experiments on two histopathology image datasets. In experiments on a cervical dataset and a lymph node dataset, the image classification performance is improved by 8.1% and 2.3%, respectively, when utilizing high-quality synthetic images selected by our RL framework. Our proposed synthetic sample selection method is general and has great potential to boost the performance of various medical image recognition systems given limited annotation.Comment: MICCAI202

    A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda).

    Get PDF
    BACKGROUND: The infraorder Anomura has long captivated the attention of evolutionary biologists due to its impressive morphological diversity and ecological adaptations. To date, 2500 extant species have been described but phylogenetic relationships at high taxonomic levels remain unresolved. Here, we reconstruct the evolutionary history-phylogeny, divergence times, character evolution and diversification-of this speciose clade. For this purpose, we sequenced two mitochondrial (16S and 12S) and three nuclear (H3, 18S and 28S) markers for 19 of the 20 extant families, using traditional Sanger and next-generation 454 sequencing methods. Molecular data were combined with 156 morphological characters in order to estimate the largest anomuran phylogeny to date. The anomuran fossil record allowed us to incorporate 31 fossils for divergence time analyses. RESULTS: Our best phylogenetic hypothesis (morphological + molecular data) supports most anomuran superfamilies and families as monophyletic. However, three families and eleven genera are recovered as para- and polyphyletic. Divergence time analysis dates the origin of Anomura to the Late Permian ~259 (224-296) MYA with many of the present day families radiating during the Jurassic and Early Cretaceous. Ancestral state reconstruction suggests that carcinization occurred independently 3 times within the group. The invasion of freshwater and terrestrial environments both occurred between the Late Cretaceous and Tertiary. Diversification analyses found the speciation rate to be low across Anomura, and we identify 2 major changes in the tempo of diversification; the most significant at the base of a clade that includes the squat-lobster family Chirostylidae. CONCLUSIONS: Our findings are compared against current classifications and previous hypotheses of anomuran relationships. Many families and genera appear to be poly- or paraphyletic suggesting a need for further taxonomic revisions at these levels. A divergence time analysis provides key insights into the origins of major lineages and events and the timing of morphological (body form) and ecological (habitat) transitions. Living anomuran biodiversity is the product of 2 major changes in the tempo of diversification; our initial insights suggest that the acquisition of a crab-like form did not act as a key innovation

    Tree spatial pattern within the forest–tundra ecotone: a comparison of sites across Canada

    Get PDF
    Accepted VersionAlthough many studies have focused on factors influencing treeline advance with climate change, less consideration has been given to potential changes in tree spatial pattern across the forest–tundra ecotone. We investigated trends in spatial pattern across the forest–tundra ecotone and geographical variation in the Yukon, Manitoba, and Labrador, Canada. Tree cover was measured in contiguous quadrats along transects up to 100 m long located in Forest, Ecotone, and Tundra sections across the forest–tundra transition. Spatial patterns were analyzed using new local variance to estimate patch size and wavelet analysis to determine the scale and amount of aggregation. Compared with the Forest, tree cover in the Ecotone was less aggregated at most sites, with fewer smaller patches of trees. We found evidence that shorter trees may be clumped at some sites, perhaps due to shelter from the wind, and we found little support for regular spacing that would indicate competition. With climate change, trees in the Ecotone will likely become more aggregated as patches enlarge and new patches establish. However, results were site-specific, varying with aspect and the presence of krummholz (stunted trees); therefore, strategies for adaptation of communities to climate change in Canada’s subarctic forest would need to reflect these differences

    Alu elements mediate MYB gene tandem duplication in human T-ALL

    Get PDF
    Recent studies have demonstrated that the MYB oncogene is frequently duplicated in human T cell acute lymphoblastic leukemia (T-ALL). We find that the human MYB locus is flanked by 257-bp Alu repeats and that the duplication is mediated somatically by homologous recombination between the flanking Alu elements on sister chromatids. Nested long-range PCR analysis indicated a low frequency of homologous recombination leading to MYB tandem duplication in the peripheral blood mononuclear cells of ∼50% of healthy individuals, none of whom had a MYB duplication in the germline. We conclude that Alu-mediated MYB tandem duplication occurs at low frequency during normal thymocyte development and is clonally selected during the molecular pathogenesis of human T-ALL

    Alu elements mediate MYB gene tandem duplication in human T-ALL

    Get PDF
    Recent studies have demonstrated that the MYB oncogene is frequently duplicated in human T cell acute lymphoblastic leukemia (T-ALL). We find that the human MYB locus is flanked by 257-bp Alu repeats and that the duplication is mediated somatically by homologous recombination between the flanking Alu elements on sister chromatids. Nested long-range PCR analysis indicated a low frequency of homologous recombination leading to MYB tandem duplication in the peripheral blood mononuclear cells of ∼50% of healthy individuals, none of whom had a MYB duplication in the germline. We conclude that Alu-mediated MYB tandem duplication occurs at low frequency during normal thymocyte development and is clonally selected during the molecular pathogenesis of human T-ALL

    Comparative Analysis of the Frequency and Distribution of Stem and Progenitor Cells in the Adult Mouse Brain

    Get PDF
    cells (NSCs) and progenitor cells, but it cannot discriminate between these two populations. Given two assays have purported to overcome this shortfall, we performed a comparative analysis of the distribution and frequency of NSCs and progenitor cells detected in 400 m coronal segments along the ventricular neuraxis of the adult mouse brain using the neurosphere assay, the neural colony forming cell assay (N-CFCA), and label-retaining cell (LRC) approach. We observed a large variation in the number of progenitor/stem cells detected in serial sections along the neuraxis, with the number of neurosphereforming cells detected in individual 400 m sections varying from a minimum of eight to a maximum of 891 depending upon the rostral-caudal coordinate assayed. Moreover, the greatest variability occurred in the rostral portion of the lateral ventricles, thereby explaining the large variation in neurosphere frequency previously reported. Whereas the overall number of neurospheres (3730 276) or colonies (4275 124) we detected along the neuraxis did not differ significantly, LRC numbers were significantly reduced (1186 188, 7 month chase) in comparison to both total colonies and neurospheres. Moreover, approximately two orders of magnitude fewer NSC-derived colonies (50 10) were detected using the N-CFCA as compared to LRCs. Given only 5% of the LRCs are cycling (BrdU/Ki-67) or competent to divide (BrdU/Mcm-2), and proliferate upon transfer to culture, it is unclear whether this technique selectively detects endogenous NSCs. Overall, caution should be taken with the interpretation and employment of all these techniques

    Education Research in the Canadian Context

    Get PDF
    This special issue of the International Journal of Education Policy & Leadership (IJEPL), Research in the Canadian Context, marks a significant milestone for the journal. Throughout our twelve-year history, we have sought to publish the best research in leadership, policy, and research use, allowing authors to decide the topics by dint of their research. While this model still serves as the foundation for IJEPL content, we decided to give researchers a chance to engage in deeper conversations by introducing special issues. In our first special issue, researchers discuss their work within the scope of education policy, leadership, and research use within the Canadian context. While many aspects of leadership, teaching, and learning can be seen as similar across contexts, there are also issues of particular concern within national, regional, provincial, or local spheres, particularly when looking at policy and system changes. The researchers featured in this issue provide an important look into education in Canada.PolicyIn the policy realm, Sue Winton and Lauren Jervis examine a 22-year campaign to change special education assessment policy in Ontario, examining how discourses dominant in the province enabled the government to leave the issue unresolved for decades. Issues of access and equity play out within a neoliberal context focused on individualism, meritocracy, and the reduced funding of public services. While Winton and Jervis highlight the tension between policy goals and ideological contexts, Jean-Vianney Auclair considers the place of policy dialogues within governmental frames, and the challenge of engaging in broadly applicable work within vertically structured governmental agencies. One often-touted way to move beyondResearch useWithin the scope of research use, Sarah L. Patten examines how socioeconomic status (SES) is defined and measured in Canada, the challenges in defining SES, and potential solutions specific to the Canadian context. In looking at knowledge mobilization, Joelle Rodway considers how formal coaches and informal social networks nserve to connect research, policy, and practice in Ontario’s Child and Youth Mental Health program.LeadershipTurning to leadership, contributing researchers explored the challenges involved in staff development, administrator preparation, and student outcomes. Keith Walker and Benjamin Kutsyuruba explore how educational administrators can support early career teachers to increase retention, and the somewhat haphazard policies and supports in place across Canada to bring administrators and new teachers together. Gregory Rodney MacKinnon, David Young, Sophie Paish, and Sue LeBel look at how one program in Nova Scotia conceptualizes professional growth, instructional leadership, and administrative effectiveness and the emerging needs of administrators to respond to issues of poverty, socioemotional health, and mental health, while also building community. This complex environment may mean expanding leadership preparation to include a broader consideration of well-being and community. Finally, Victoria Handford and Kenneth Leithwood look at the role school leaders play in improving student achievement in British Columbia, and the school district characteristics associated with improving student achievement.Taken together, the research in this special issue touches on many of the challenges in policy development, application, and leadership practice, and the myriad ways that research can be used to address these challenges. We hope you enjoy this first special issue of IJEPL

    Biomass Production of Herbaceous Energy Crops in the United States: Field Trial Results and Yield Potential Maps from the Multiyear Regional Feedstock Partnership

    Get PDF
    Current knowledge of yield potential and best agronomic management practices for perennial bioenergy grasses is primarily derived from small‐scale and short‐term studies, yet these studies inform policy at the national scale. In an effort to learn more about how bioenergy grasses perform across multiple locations and years, the U.S. Department of Energy (US DOE)/Sun Grant Initiative Regional Feedstock Partnership was initiated in 2008. The objectives of the Feedstock Partnership were to (1) provide a wide range of information for feedstock selection (species choice) and management practice options for a variety of regions and (2) develop national maps of potential feedstock yield for each of the herbaceous species evaluated. The Feedstock Partnership expands our previous understanding of the bioenergy potential of switchgrass, Miscanthus, sorghum, energycane, and prairie mixtures on Conservation Reserve Program land by conducting long‐term, replicated trials of each species at diverse environments in the U.S. Trials were initiated between 2008 and 2010 and completed between 2012 and 2015 depending on species. Field‐scale plots were utilized for switchgrass and Conservation Reserve Program trials to use traditional agricultural machinery. This is important as we know that the smaller scale studies often overestimated yield potential of some of these species. Insufficient vegetative propagules of energycane and Miscanthus prohibited farm‐scale trials of these species. The Feedstock Partnership studies also confirmed that environmental differences across years and across sites had a large impact on biomass production. Nitrogen application had variable effects across feedstocks, but some nitrogen fertilizer generally had a positive effect. National yield potential maps were developed using PRISM‐ELM for each species in the Feedstock Partnership. This manuscript, with the accompanying supplemental data, will be useful in making decisions about feedstock selection as well as agronomic practices across a wide region of the country
    corecore