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Abstract

Current knowledge of yield potential and best agronomic management practices for perennial bioenergy grasses

is primarily derived from small-scale and short-term studies, yet these studies inform policy at the national

scale. In an effort to learn more about how bioenergy grasses perform across multiple locations and years, the

U.S. Department of Energy (US DOE)/Sun Grant Initiative Regional Feedstock Partnership was initiated in 2008.

The objectives of the Feedstock Partnership were to (1) provide a wide range of information for feedstock selec-

tion (species choice) and management practice options for a variety of regions and (2) develop national maps of

potential feedstock yield for each of the herbaceous species evaluated. The Feedstock Partnership expands our
previous understanding of the bioenergy potential of switchgrass, Miscanthus, sorghum, energycane, and prairie

mixtures on Conservation Reserve Program land by conducting long-term, replicated trials of each species at

diverse environments in the U.S. Trials were initiated between 2008 and 2010 and completed between 2012 and

2015 depending on species. Field-scale plots were utilized for switchgrass and Conservation Reserve Program

trials to use traditional agricultural machinery. This is important as we know that the smaller scale studies often

overestimated yield potential of some of these species. Insufficient vegetative propagules of energycane and Mis-

canthus prohibited farm-scale trials of these species. The Feedstock Partnership studies also confirmed that envi-

ronmental differences across years and across sites had a large impact on biomass production. Nitrogen
application had variable effects across feedstocks, but some nitrogen fertilizer generally had a positive effect.

National yield potential maps were developed using PRISM-ELM for each species in the Feedstock Partnership.

This manuscript, with the accompanying supplemental data, will be useful in making decisions about feedstock

selection as well as agronomic practices across a wide region of the country.

Keywords: bioenergy, biomass, Conservation Reserve Program, energycane, feedstock, Miscanthus, sorghum, switchgrass
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Introduction

Herbaceous dedicated energy crops including switch-

grass (Panicum virgatum), Miscanthus (Miscanthus spp.),

energycane (Saccharum spp.), and sorghum (Sorghum

bicolor) will play an important role in future sustainable

bioenergy feedstock production, as outlined first in the

2005 Billion Ton Study (U.S. Department of Energy,

2005) then in the 2011 Billion Ton Update (U.S. Depart-

ment of Energy, 2011) and recently in the 2016 Billion

Ton Report (U.S. Department of Energy, 2016).

Switchgrass has received the greatest attention among

all the potential perennial herbaceous bioenergy feed-

stocks studied in the past three decades (Parrish & Fike,

2005). The outpouring of interest and research effort on

this North American native species arose from its high

productivity, broad adaptability, and suitability to mar-

ginal sites. These were key factors that led the U.S.

Department of Energy to select switchgrass as a model

energy crop (Kszos et al., 2000).

Because of its high genetic diversity, switchgrass

grows across an expansive native range, extending from

Canada to Mexico and from the Atlantic Coast to the

Sierra Nevada Mountains (Hitchcock, 1971). The species

has both upland and lowland ecotypes, primarily classi-

fied by their preferred habitat. Although there is some

overlap in site adaptation, upland ecotypes are better

suited to higher, drier land forms, and at higher lati-

tudes while lowland ecotypes generally perform better

in deeper soils, wetter conditions, and at lower latitudes

(Brunken & Estes, 1975; Sanderson et al., 1996; Casler

et al., 2004). Lowland ecotypes are larger, more robust

plants that often reach heights >3 m. Upland ecotypes

generally are finer-stemmed and shorter, with thicker

roots and longer root internodes. Because of greater

yield potential, lowland ecotypes are of interest where

they are adapted for bioenergy production. However,

upland ecotypes may be better suited for much of the

available production area in North America, which is

typified by cooler temperatures and drier conditions.

Miscanthus 3 giganteus Greef & Deuter ex Hodkinson

& Renvoize is a large (up to 4 m) perennial grass grown

as a bioenergy crop in Europe and the United States.

Originally discovered in Japan in 1935, the parents of

this sterile triploid hybrid are the fertile diploid M. si-

nensis and tetraploid M. sacchariflorus (Hodkinson et al.,

2002). The hybrid was initially used as a landscape

plant, first in Europe and later in North America. Mis-

canthus 3 giganteus has been studied as a bioenergy

crop in trials in Europe since 1983 (Lewandowski et al.,

2000) and in the United States since the early 2000s

(Heaton et al., 2004). Impressive biomass yields up to

40 Mg ha�1 in some European locations (Miguez et al.,

2008) have been reported, with mean yields ofCorrespondence: Vance N. Owens, tel. 1-605-688-5476, fax 1-605-

688-5530, e-mail: vance.owens@sdstate.edu
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22 Mg ha�1 throughout the continent (Heaton et al.,

2004). In the United States, yields from small-scale plots

have ranged from 35 Mg ha�1 (Heaton et al., 2008) to

63 Mg ha�1 (Smith et al., 2015). However, it is unknown

whether field-scale plantings could reach these yields in

the United States, particularly across varied environ-

mental conditions. Yields from US studies typically

average about 23 Mg ha�1, but much lower values have

also been reported (e.g., 4.5 Mg ha�1, Lee et al., 2014).

Yields of 20–24 Mg ha�1 would be desirable, if such

yields could be sustained across locations and years.

Additional data were sought as part of the Feedstock

Partnership to determine the locations, climates, and

agronomic practices required to achieve optimum yield

goals.

Sorghum (Sorghum bicolor L. Moench) has emerged

as an important bioenergy crop for several reasons.

First, it is an annual species amenable to normal crop

rotations. The annual nature of the crop means that it

can also be used to rapidly replace losses of perennial

crops when stands are unexpectedly lost. Second,

energy sorghum is widely adapted and highly amen-

able to U.S. production and cultivation systems, and

under optimum conditions, current energy sorghum

hybrids can produce up to 40 Mg of biomass per hec-

tare (Rooney et al., 2007; Mullet et al., 2014). In addi-

tion, energy sorghum has excellent drought tolerance

and high water use efficiency (Mullet et al., 2002; San-

chez et al., 2002; Buchanan et al., 2005). Third, sor-

ghum has an extensive history of cultivation and is

supported by pre-existing production infrastructure

and numerous breeding programs that develop new

hybrids (Rooney, 2004).

Among energy crops, sorghum is unique because dif-

ferent types produce economic quantities of starch,

sugar, and lignocellulosic biomass. Consequently, sev-

eral types of sorghum can be used for biofuel or biopro-

duct production. Grain sorghum is used to produce

ethanol in geographic regions where economics and

supply allows it (Wang et al., 2008). Energy sorghum

types accumulate high biomass yields because they are

photoperiod sensitive, meaning that flowering is

delayed in long-day environments, which results in a

longer vegetative growth period (Rooney & Aydin,

1999; Rooney et al., 2007; Olson et al., 2013). These types

of sorghums are designed to produce biomass for

lignocellulosic ethanol conversion programs (Packer &

Rooney, 2014). Last, sweet sorghum contains high con-

centrations of fermentable sugar in a juicy stalk. Like

sugarcane (Saccharum spp.), this juice can be extracted

and fermented directly into ethanol and the bagasse

can be used to make bioproducts from the remaining

cellulose, hemicellulose, and lignin or burned for power

generation.

Sugarcane is bred for large stalk diameter, low fiber

content, and high sugar content. The northern limits of

current sugarcane varieties have always been deter-

mined by the tropical origins of their parents. During

the 1960s, mosaic virus threatened the sugarcane indus-

try in Louisiana. The USDA-ARS Sugarcane Research

Unit at Houma imported wild cane (Saccharum sponta-

neum) from the Himalayas and screened it for resistance

to mosaic virus (Hale, personal communication). Along

with the mosaic virus resistance from the S. spontaneum

parent, there were other stress tolerances, including cold

tolerance. In the 1970s, Louisiana State University made

crosses and selected hybrid progeny of sugarcane 3 S.

spontaneum for biomass and high fiber content, releasing

L79-1002, an ‘energycane’ specifically as a biomass feed-

stock (Bischoff et al., 2008). The Sugarcane Research

Unit continued to make crosses and selections through-

out the 1990s, and added cold hardiness to the list of

desirable traits. Energycane, like sugarcane, is a tropical

perennial that is vegetatively propagated. A crop can be

harvested and grows back from the crown the year

after. Unlike most other summer crops, energycane is

established in the fall from mature canes of existing

plants. As energycane is vegetatively propagated, vigor

observed in F1 hybrids of the original cross is main-

tained. Establishment of a field follows the same process

as commercial sugarcane. Mature canes (seedcane) of

the desired genotype are harvested in August or

September. Being tropical in origin, energycane does

not undergo a natural senescence. Growth slows in the

fall because of cooler temperatures, but a killing frost is

required to stop growth.

Conservation Reserve Program (CRP) lands having

mixed perennial grasses are a potential source of bio-

mass for cellulosic biofuel production. According to the

Billion Ton Update, up to 10 million ha of CRP land

could be used to produce 50 million Mg of dry bioen-

ergy feedstock annually (USDOE, 2011). The CRP is a

voluntary cost-share and land rental program estab-

lished by the Food Security Act of 1985 (1985). The pri-

mary goal of the program is to protect environmentally

sensitive lands by removing them from conventional

crop production and establishing perennial plants for

groundcover and wildlife habitat. However, CRP lands

have declined by 34% over the past 10 years due to

higher grain prices (Fargione et al., 2009; Secchi et al.,

2009; Wright & Wimberly, 2013), and qualifying bio-

mass feedstock cannot be sourced from land cleared

after December 19, 2007 according to the Renewable

Fuel Standard (EISA, 2007; USDA, 2010; Schnepf &

Yacobucci, 2013). Managed haying of CRP land with

contracts approved prior to July 28, 2010 may be con-

ducted, but several stipulations exist, including, fre-

quency of no more than once every 3 years, for a period

© 2018 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd, 10, 698–716
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of no longer than 90 days, typically July 16 through

September 30, outside of the primary nesting season, on

no more than 50% of contiguous fields in any given

year, and on eligible land, excluding, for example, land

within 30.5 m of a stream or permanent water body

(Farm Security and Rural Investment Act of 2002;

USDA-FSA, 2014). In addition, landowners have

incurred a 25% reduction in CRP rental payments on

hayed acres, and hay can be used on-farm or sold as

animal feed or biomass (USDA-FSA, 2011). Best man-

agement practices for producing biomass on CRP land

need to be established in order to ensure high yields,

stand longevity, and grower profitability.

The 2011 Billion Ton Update summarized many plot-

scale studies and concluded that dedicated energy crops

including perennial grasses such as switchgrass, Mis-

canthus, and energycane, and annual crops such as sor-

ghum, offer great potential for sustainable biomass

production. In addition, the 2011 USDA regional road-

map (U.S. Department of Agriculture, 2010) identified

the U.S. southeast and central east as major regions for

feedstock production using these grasses.

However, clear management guidelines and field-

based yield estimates are lacking for some of these

crops, especially at realistic scales (farm, local, and

regional). In 2008, the US DOE/Sun Grant Regional

Feedstock Partnership (hereafter the Feedstock Partner-

ship) began testing herbaceous feedstocks across the

landscape in many states in the contiguous United

States as well as Hawaii. Work on these species has

taken place at the subfield to subwatershed scale, and

the larger research areas include various topographic

positions on the landscape. Willow shrubs (Salix spp.)

and hybrid poplar (Populus spp.) were also included in

the Feedstock Partnership work, and results from these

trials are reported in Volk et al. (2017).

The objectives of the Feedstock Partnership studies

were to (1) provide a wide range of information for

feedstock selection (species choice) and management

practice options for a variety of regions and (2) develop

national maps of potential feedstock yield for each of

the herbaceous species evaluated. For objective 1, this

study discusses empirically derived yield potential as

well as certain management practices that affect yield

(e.g., cultivar selection, establishment, fertility, and har-

vest timing). For objective 2, yield potential maps were

developed through an iterative process using the PRISM

Environmental Limitation Model (PRISM-ELM) (Daly

et al., 2017) and based in part on field research data

(both small plot and field scale) obtained from Feed-

stock Partnership trials. In addition, the summarized

raw data from these trials are provided as a supplement

to this study, and the full dataset is accessible via

the Knowledge Discovery Framework (KDF; U.S.

Department of Energy Bioenergy KDF/https://www.b

ioenergykdf.net).

Materials and methods

Switchgrass

An 8-year field study (2008–2015) was completed as part of the

Feedstock Partnership. A wide range of sites was chosen for

this study to take advantage of switchgrass’ broad adaptability,

with large differences in geography, climate, and soil condi-

tions. Fike et al. (2017) provide detailed information for each

site including soil description, latitude and longitude, plot size,

total annual precipitation, average daily temperature, previous

crop, planting date, cultivar selection, and average annual bio-

mass production. This information was relevant for under-

standing potential bioenergy schemes across the United States

and also provided information for geospatial modeling. Switch-

grass field trials were located in Elmore County, AL; Story

County, IA; Tompkins County, NY; Muskogee County, OK;

Day County, SD; and Pittsylvania County, VA. With the excep-

tion of the IA location, land at these sites was generally consid-

ered marginally productive for commodity crops relative to

other sites in the region due to edaphic and topographic condi-

tions. Reasons for marginal production varied by location but

included poor drainage (OK and NY), slope (SD), and soil type

(VA).

Switchgrass cultivars varied by site and choices were based

on our understanding of productivity, site adaptation, and seed

availability. Northern locations were planted to upland culti-

vars ‘Cave-in-Rock’ (IA and NY) and ‘Sunburst’ (SD). ‘Black-

well’, a regionally derived and adapted upland cultivar, was

planted in OK because seeds of lowland ecotypes were not

readily procurable due to other large-scale plantings occurring

at the time. ‘Alamo,’ a broadly planted lowland ecotype that

had been used in previous local and regional trials (Ma et al.,

2001; Fike et al., 2006a,b; Bransby & Huang, 2014), was planted

in AL and VA.

Switchgrass was planted at NY, OK, SD, and VA in 2008, IA

in 2009, and AL in 2010. Initial fertility applications and first

cropping year occurred the year after planting at all sites. All

field operations (site preparation, planting, fertilization, and

harvest) were conducted using commercially available equip-

ment. Plot sizes were approximately 0.5–1.0 ha, and experi-

mental treatments consisted of three nitrogen (N) rates (0, 56,

and 112 kg N ha�1). Nitrogen sources varied by site, but were

limited to urea or ammonium sulfate. Treatments were repli-

cated four times within sites. Biomass harvests in years follow-

ing the year of establishment occurred as early as September

(AL) and as late as March (VA) but most occurred in October

or November, following a killing frost. The final crop year for

this research occurred in 2015.

Miscanthus 3 giganteus

The 6-year field study (2010–2015) was repeated at five loca-

tions. Miscanthus 3 giganteus ‘Illinois’ (hereafter, Miscanthus)

rhizomes obtained from the Chicago Botanic Garden were used

© 2018 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd, 10, 698–716
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to develop demonstration plantings at UIUC in 1988 (Maughan

et al., 2012), and rhizomes (~25 g ea.) harvested from the

demonstration planting were propagated in UIUC greenhouses

in spring 2008. In June 2008, potted plants were sent to all par-

ticipating locations for hardening and transplanting. At the ini-

tiation of the project in 2008, the five participating sites in the

Feedstock Partnership were the University of Illinois (Urbana,

IL), Purdue University (West Lafayette, IN), the University of

Kentucky (Lexington, KY), the University of Nebraska (Mead,

NE), and Rutgers University (Adelphi, NJ). Due to high Mis-

canthus mortality and cooperator turnover, however, the Pur-

due University site was dropped following the planting year

and replaced in spring 2010 with a Virginia Tech site in Gretna,

VA.

At all sites, 100 Miscanthus plants were transplanted into

each of twelve 10 m 3 10 m test plots, a density that is in line

with current practice and recommendations (Lewandowski

et al., 2000; Lee et al., 2014). Irrigation and weed control were

supplied as necessary to ensure establishment (Williams &

Douglas, 2011; Lee et al., 2014). In IL, due to severe winterkill

during the 2008–2009 winter, 75% of the plants were replaced

in spring 2009 to bring the number of live plants per plot back

to 100.

Three nitrogen fertility treatments were applied (0, 60, and

120 kg N ha�1 using urea as the N source) in each location,

and treatments were replicated four times. Planting and har-

vest dates were recorded, as were soil type, environmental data

(precipitation, temperature), soil fertility (N, P, K), and biomass

yield and moisture. The N treatments were applied annually

thereafter.

Yields were determined by hand harvesting the above-

ground biomass from 4 m2 in the centers of each plot cut at

10 cm in IL, KY, NJ, and VA. Plots in NE were mechanically

harvested. Harvest (fresh) weights were determined, and the

dry biomass was measured by calculating the percent moisture

of an oven-dried subsample. Harvests took place each year

starting in 2009 between November and April following senes-

cence, depending on weather, location, and year. The timing is

in line with current practice in the Midwestern United States

(Lee et al., 2014).

Sorghum

A 5-year study (2008–2012) was conducted by the Feedstock

Partnership. Six sorghum genotypes were evaluated in all

seven environments over 5 years. The seven environments

were chosen to represent diverse bioenergy sorghum produc-

tion sites and included Manhattan, KS; College Station, TX;

Corpus Christi, TX; Ames, IA; Lexington, KY; Raymond, MS;

and Roper, NC. All yield trials were rainfed, and no irrigation

was applied in any environment. Nitrogen was applied in each

environment per recommended rates for forage sorghum pro-

duction in the region. The six genotypes included five commer-

cial hybrids and one sweet sorghum cultivar and are described

in detail by Gill et al. (2014). Most of these sorghums were not

specifically developed for bioenergy. In all environments, a

randomized complete block design was used, but plot size and

number of replications varied across locations. Agronomic

practices standard for each location were used. Agronomic

traits evaluated at each location included fresh weight of total

biomass, moisture concentration of the biomass, and dry

weight of biomass. Fresh weight was measured in the field,

while moisture content was determined by drying a freshly

harvested sample, drying it to stability in a forced air oven at

70 °C, and then reweighing the sample. Dry weight on an area

basis was estimated by multiplying fresh yield by the dry mat-

ter concentration of the dried sample.

Energycane

A 7-year field study (2009–2015) was completed as part of the

Feedstock Partnership. Five energycane lines provided through

an agreement with USDA-ARS Sugarcane Research Unit

(Houma, LA) tested from 2006 to 2008 at Mississippi State, MS,

were selected for broader testing across the Southeast and

Hawaii as part of the Feedstock Partnership (Baldwin et al.,

2012). These genotypes were as follows: Ho02-147, Ho02-144,

Ho72-114, Ho06-9001, and Ho06-9002. During the late summer

of 2008, seedcane was distributed to seven test sites (Tifton,

GA; Auburn, AL; Raymond and Mississippi State, MS; St. Gab-

riel, LA; Beaumont and College Station, TX). Crop failure at the

Auburn site caused an alternate site to be selected at Athens,

GA. Waim�analo, HI, was added in 2009. As these hybrids were

newly created, little was known concerning the area of adapta-

tion and cold hardiness. Athens, GA, and Mississippi State,

MS, were the most northern locations (33° N latitude). As

germplasm was limited, field size was restricted. Individual

genotypes were planted in plots 9.75 m long 9 3 rows (5.5 m)

wide. Fields were maintained under the recommendations for

sugarcane production (LSU, 2014). Fertility recommendations

were to maintain soil pH of 6.5 and application of

112 kg N ha�1 at northern locations, while southern locations

applied up to 150 kg N ha�1 depending on soil tests.

During subsequent years, emergence data, height, °Brix (a

measure of soluble carbohydrates), and aboveground biomass

were recorded. Harvest date varied by location, depending

on frost and local weather conditions. Dry stalks were

ground and submitted for structural carbohydrate analysis

(cellulose, lignin, and sugar). During summer 2015 and 2016,

the continental sites were in their sixth ratoon crop (7 years

of data). Hawaii, which joined the program in 2009, was

reporting its fourth ratoon crop. Yields for Waim�analo, HI,

and St. Gabriel, LA, were converted to dry weight from cane

weight (fresh harvested yield) by multiplying fresh weight by

percentage fiber.

Conservation Reserve Program (CRP) grassland

A 6-year field study (2008–2013) was conducted through the

Feedstock Partnership on established CRP lands at six sites that

represented CRP grassland distribution in the United States

(Lee et al., 2013; Anderson et al., 2016). Three of the sites—Ellis

County, KS, Jackson County, OK, and Foster County, ND—

were planted to predominantly warm-season grass mixtures,

and the other three sites—Judith Basin County, MT, Oconee

County, GA, and Boone County, MO—to cool-season grass
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mixtures. In addition to grass species, legume species were also

present at MT, MO, and KS. All locations had been managed

according to CRP regulations with no nitrogen (N) fertilization

and no biomass harvested. Plot size was 0.5 ha to better

approximate farm-scale conditions. Existing biomass was

mowed and treatments were first applied in the spring of 2008.

The experiment was designed as a factorial of three N rates

(0, 56, and 112 kg N ha�1) applied annually, and two harvest

timings (at peak standing crop, PSC, and at the end of the

growing season, EGS, after a killing frost) within a randomized

complete block with three replications at each site. Species

composition was estimated annually in June or July. Biomass

was harvested from the entirety of each plot with a farm-scale

harvester at the prescribed timings. The PSC harvest timing

was determined at each location by the occurrence of anthesis

of the predominant species. Warm-season mixture sites were

harvested at PSC near the end of summer or at EGS after a kill-

ing frost. Harvest timing for cool-season mixture sites varied

among sites, with MT plots being harvested at PSC in early

summer or at EGS in the fall. All plots in GA were harvested

in the spring, and the EGS treatment plots were also harvested

in the fall in a two-cut system. All treatments in MO were two-

cut systems, with PSC plots being harvested in midspring and

again in the fall, and EGS plots being harvested in early sum-

mer and in the fall. Biomass at all locations was baled with a

large round baler.

Yield potential maps

The resource mapping approach was designed to take advan-

tage of the informational synergy realized when bringing

together three components—coordinated field trials, expert

opinion, and spatial modeling—into a single, collaborative

effort. The first component consisted primarily of field trials of

the herbaceous crops described above. The second component

included face-to-face interactions between the modeling group

and the Feedstock Partnership agronomists conducting the

field trials. The third component was a biogeographical model-

ing and mapping system called PRISM-ELM (Parameter-eleva-

tion Regressions on Independent Slopes Model-Environmental

Limitation Model). PRISM-ELM is described in detail in Daly

et al. (2017). Briefly, PRISM-ELM is a statistical-mechanistic

model that encompasses both empirical and mechanistic tech-

niques to develop projections of potential yield based on cli-

mate and soil parameters. This model was selected because it

can generate potential yield maps for a range of different crop-

ping systems over broad regions without requiring detailed

data on plant characteristics and physiology. PRISM-ELM was

designed to answer a basic question: How do climate and soil

characteristics affect the spatial suitability and long-term pro-

duction patterns of a given crop? It employs a simple water

balance to simulate the correspondence, or lack thereof,

between water availability (based on precipitation and soil

moisture) and growing season timing (based on a temperature

response curve). The model uses simplified metrics to repre-

sent complex processes. January mean minimum temperature

and July mean maximum temperature are used to identify

areas that have cold- or warm-season temperature extremes

that may be unsuitable for meaningful crop production. Soil

pH, salinity, and drainage response curves also serve as met-

rics for unsuitable soil conditions. The focus is on a general

approach to model climatic and soil constraints on biomass

production for any crop, rather than a detailed accounting of

the particular phenology or other morpho-physiological fea-

tures of a given species or genotype. Suitability maps estimated

by PRISM-ELM were transformed into yield potential maps

through statistical regressions between the level of environ-

mental suitability and biomass yield data from the Feedstock

Partnership field trials.

Results

Switchgrass

Large yield variation was observed among sites over

the course of the study—not unexpected given the

range of sites, site conditions, and cultivars included in

this research (Fig. 1; Table S1). In the first production

year (i.e., the year following the planting year), yields

ranged from 1.26 (SD) to 7.88 (NY) Mg ha�1. Variation

within sites—even over the three N rates—generally

was not as great as site-to-site variability.

Average yields over the first 3 years of production in

AL, IA, and NY were 10.7, 7.8, and 7 Mg ha�1, respec-

tively, but yields for the remaining sites during this

time period were in the 4–6 Mg ha�1 range. Yields also

increased over the first few production years at most

sites, but they were more stable over time in IA, NY,

and SD. For example, during the last 3 or 4 years of the

study, average yields in IA, NY, and SD were 8.0, 7.8,

and 4.5 Mg ha�1, respectively, representing increases of

about 3–13%. In contrast, yields between these time

periods increased over 50% in OK (5.5 vs. 8.3 Mg ha�1)

and 34% in VA (6.1 vs. 8.2 Mg ha�1).

Switchgrass response to N was highly variable, but

greatest in SD and VA. These two locations had the

lowest initial soil N (Owens et al., 2013), with levels

through the profile only 62% (SD) and 30% (VA) of

average profile N levels of the other sites. At these two

sites, large production responses to N were observed

in the initial production years (2009–2012; Hong et al.,

2014), and over all the production years the percent

yield increase in response to N (highest N treatment

vs. control) averaged 57% in SD and 76% in VA. In

contrast, the average yield increases in AL (where

some of the highest yields were recorded) was about

13%. In OK and NY, there was no benefit of added N

across years, and in some production seasons, the

effects of N on switchgrass in NY were significantly

negative. The response pattern in IA was unlike that in

other locations in that the response to N was limited in

the first few years of production, but by the fourth
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through sixth years the yield increase with high N

averaged 67%.

PRISM-ELM yield estimates

In addition to field studies, switchgrass field researchers

and scientists from Oak Ridge National Laboratory met

with the Oregon State University PRISM-ELM Climate

group to develop maps of switchgrass yield potential

across the United States based on data gathered from

these field trials and from previous work (Fig. 2). Aver-

age relative maximum yield for lowland ecotypes was

22 and 13 Mg ha�1 for upland ecotypes. Modeled yields

confirm the yield advantage of lowland ecotypes, specif-

ically in the southeastern United States. They also

demonstrate the wide adaptability of upland ecotypes

east of the 100th meridian.

Miscanthus 3 giganteus

In IL, KY, NE, and NJ, average yields across all fertility

treatments from 2010 to 2015 were 18.1, 15.3, 24.7, and

16.5 dry Mg ha�1, respectively, and 17.3 dry Mg ha�1

for VA, 2012–2015. Miscanthus typically approaches

plateau yields in two to five growing seasons (Zub &

Brancourt-Hulmel, 2010), and we chose year three to

begin our reporting.

There were productivity differences among sites and

years, and thus, each site and year was analyzed sepa-

rately. There were no effects from N applications in
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Fig. 1 Average annual dry biomass yield of switchgrass in response to three N rates at six locations across the United States between

2009 and 2015. With the exception of the AL location, yield data were collected beginning the year after planting. The AL location

experienced stand failure in 2008 and 2009, and yield data were not collected until 2012. The IA location was not planted until 2009.

Bars represent standard errors of the differences in means when analyzed by location (a = 0.05).
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growing years three and four at any site (Fig. 3;

Table S2). Nitrogen fertilizer applications did not affect

productivity in any year in KY. In most cases, when N

fertilizer application affected productivity, the fertilized

plots were more productive than the unfertilized plots

and there were no productivity differences between the

60 and 120 kg N ha�1 (IL, 2012–2015; NJ, 2013; and VA,

2014 and 2015). In NJ (2014), the 120 kg N ha�1

treatment was more productive than the 0 and

60 kg N ha�1 treatments, and in NE (2015), only the

120 kg N ha�1 treatment was more productive than the

0 kg N ha�1 treatment (Fig. 3; Table S2). Across sites,

2012 was a lower-yielding year due to the severe

drought in much of the study region. Most sites

rebounded to predrought yields in 2013 or 2014.

PRISM-ELM yield estimates

PRISM-ELM maps were created using a 4-year average

yield for the years 2009–2015 and regressed against the

Fig. 2 Biomass yield potential of upland (top) and lowland (bottom) switchgrass for the United States generated using the PRISM-

ELM model and based in part on Regional Feedstock Partnership Field Trials (red dots).
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actual yield values (Fig. 4). Our field data are well rep-

resented in the model results, although we did see

higher yields than the model predicted in some years

and locations (e.g., 2012 NE and 2014 NJ). However, it

is important to note that the PRISM-ELM models are

based on climate data averaged from 1981 to 2010, and

that any spikes in particular years will be smoothed out

due to averaging.

Although we did not carry out the study in all

regions of the United States, field and modeling results

indicate that earlier, outdated yield projection maps

(Miguez et al., 2012) should be revised with greater

regional suitability for Miscanthus, including an

expanded east–west band in the north from NE to NJ

(Fig. 4).

Sorghum

While variation was detected among genotypes, environ-

mental conditions were the major factor affecting both

biomass yield and composition in a given year and annual

rainfall was the single most important variable. This was

reflected in the wide variation in yield across years within

a location (Table 1; Table S3). In fact, four environments

were lost due to weather conditions (Table 1; Table S3). In

general, the southeastern United States had the highest

and most stable yields, indicating that this is the most

stable region for sorghum biomass production (Table 1;

Table S3). The variation among genotypes for dry biomass

yield indicated that sorghum germplasm can be

improved and that certain hybrids are more tractable for

0

5

10

15

20

25

30

35

40

2010 2011 2012 2013 2014 2015

Miscanthus x giganteus - IL

0 60 120
N rate (kg ha–1)

0

5

10

15

20

25

30

35

40

2010 2011 2012 2013 2014 2015

Miscanthus x giganteus - KY

0 60 120

Bi
om

as
s (

M
g 

ha
–1

)

N rate (kg ha–1)

0

5

10

15

20

25

30

35

40

2010 2011 2012 2013 2014 2015

Miscanthus x giganteus - NJ

0 60 120

N rate (kg ha–1)

Year

0

5

10

15

20

25

30

35

40

2010 2011 2012 2013 2014 2015

Miscanthus x giganteus - NE

0 60 120

Bi
om

as
s (

M
g 

ha
–1

)

N rate (kg ha–1)

N rate (kg ha–1)

0

5

10

15

20

25

30

35

40

2010 2011 2012 2013 2014 2015
Year

Miscanthus x giganteus - VA

0 60 120

Bi
om

as
s (

M
g 

ha
–1

)

Fig. 3 Average annual dry biomass yield of Miscanthus in response to three N rates at five locations across the United States

between 2010 and 2015. Miscanthus was planted from rhizomes in 2008 except at VA where transplanting occurred in 2009. Bars rep-

resent standard errors of the differences in means when analyzed by location (a = 0.05).
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biomass/bioenergy production. In fact, since study was

initiated, numerous additional sorghum hybrids with

improved agronomic performance for biomass produc-

tion have been developed and are commercially available.

In addition, dual-purpose sorghums, which combine both

starch and cellulosic biomass production, have been inte-

grated into some biomass conversion systems (Burks

et al., 2013). All of these developments occurring within a

short time frame confirm the capacity of the sorghum

improvement programs to make improvements in this

annual energy crop.

PRISM-ELM yield estimates

Using data generated from the Feedstock Partnership

trials as well as other yield data collected, and com-

bined with basic growth parameters and weather data,

the PRISM-ELM model for bioenergy sorghum indicates

that sorghum has high yield potential across a wide

range of the Central and Eastern United States (Fig. 5).

Yields in the far northern United States (>42° N) trend

lower due to the cooler temperatures and short growing

season. In the southeast, while the productivity is high

overall, the relative increases and reductions are associ-

ated with soil fertility and quality.

Energycane

As expected, energycane characteristics showed a location

effect. Variety and year effects were also significant at all

locations except Hawaii. Generally, yield increased from

the onset of the test (2009) to 2011 and 2012, but then

declined (Tables 2 and 3; Table S4). Notable exceptions to

this were the Beaumont, TX, site whichmistakenly applied

twice the annual N rate during the final 2 years, and

Fig. 4 Biomass yield potential of Miscanthus for the United States generated using the PRISM-ELM model and based in part on

Regional Feedstock Partnership Field Trials (red dots).

Table 1 Annual dry biomass yield (Mg ha�1) averaged over

all six genotypes between 2008 and 2012

Location

Years
Location

average2008 2009 2010 2011 2012

Corpus Christi,

TX

16.9 6.6 5.0 4.5 7.1e

College Station,

TX

14.2 10.7 11.1 4.0 14.9 10.4d

Ames, IA 13.9 15.4 17.2 15.6 15.5b

Manhattan, KS 16.4 10.8 15.2 12.3 13.3c

Lexington, KY 15.1 12.2 22.8 17.3a

Raymond, MS 9.4 16.0 17.5 17.9 17.9 16.3b

Roper, NC 23.5 16.4 13.3 16.7 17.5a

Year average 14.1b 15.0a 13.6b 11.5c 15.4a

The absence of yield data for a location and yield was due to

environmental factors: Corpus Christi in 2009 (drought), Man-

hattan in 2012 (storm damage), Roper in 2008 (storm damage),

and Ames in 2008 (wet weather prevented planting). Lexing-

ton, KY began testing in 2010.

Different letters in the Location Average column indicate statis-

tical differences among the means at P < 0.05.

Different letters in the Year Average row indicate statistical dif-

ferences among the means at P < 0.05.
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Mississippi State, MS, where yields continued to decline

due to two below-average precipitation winters. While

there were varietal differences by location, Ho 06-9001 had

the greatest mean dry matter yield (MDMY) for seven of

eight locations throughout the entire duration of the test-

ing (Table 2). At College Station, Ho72-114 had the greatest

MDMY. Lowest MDMYs were observed at Raymond

(12.1 Mg ha�1), Mississippi State (12.6 and 12.9 Mg ha�1),

and Athens (14.0 Mg ha�1), which are the northern-most

locations. It should be noted that both Beaumont and St.

Gabriel are in traditional sugarcane growing regions.

Both Mississippi State and Athens showed similar

patterns over the 7 years of this study. At both loca-

tions, the pithy type (Ho72-114) had the lowest MDMY

across the 7 years, while the woody types (Ho06-9001

and Ho06-9002) had the greatest MDMY (Table 2). The

intermediate true hybrids (Ho02-144 and Ho02-147) had

a lower MDMY than the woody types, but were greater

than the pithy type. At these northern locations, geno-

type yields ranged from 14.0 to 20.8 Mg ha�1 at Athens

and 12.6 to 20.2 Mg ha�1 at Mississippi State (Table 2).

At Raymond, Ho06-9002 had the greatest mean DM

harvested (17.8 Mg ha�1), but was not different from

Ho06-9001 and Ho02-147 (Table 2). Across years,

MDMY (pooling entries) was at 14.8 Mg ha�1, showing

peak yields in 2009 and 2014 (Table 3).

At Tifton, Ho 06-9001 and Ho 06-9002 had the great-

est average MDMY (Table 2). The Ho06-900X entries are

woody types. Yields significantly decreased from 2012

through 2014 and then recovered in 2015 (Table 3). The

reduction in 2013 and 2014 may have been partially due

to a greater amount of rainfall and below-normal tem-

peratures.

Fig. 5 Biomass yield potential of sorghum for the United States generated using the PRISM-ELM model and based in part on Regio-

nal Feedstock Partnership Field Trials (red dots).

Table 2 Dry biomass yield (Mg ha�1) of five energycane geno-

types tested at eight locations averaged over the 2009 to 2015

annual harvests

Location

Variety

Ho

02-144

Ho

02-147

Ho

06-9001

Ho

06-9002

Ho

72-114

Athens, GA 19.7 a* 15.9 b 20.8 a 20.6 a 14.0 c

Tifton, GA 23.8 c 25.5 c 31.0 a 32.1 a 28.5 b

Waim�analo,

HI‡§

38.6 a 38.0 a 39.2 a 35.1 a 39.7 a

St. Gabriel,

LA§

20.1 b 22.2 ab 23.7 a 20.5 b 22.3 ab

Raymond, MS 12.1 c 15.5 ab 15.2 abc 17.8 a 13.3 bc

Miss. State,

MS

16.9 b 12.9 c 20.2 a 18.9 ab 12.6 c

Beaumont, TX 32.8 b 38.8 ab 42.1 a 39.5 ab 43.5 a

College

Station, TX

22.4 ab 19.2 b 20.5 b 21.1 ab 24.4 a

Variety average 23.3 B† 23.5 B 26.6 A 25.8 AB 25.0 AB

*lowercase letters indicate significant differences among variety

means within location at a = 0.05.

†UPPERCASE letters indicate significant differences among

variety means across all locations at a = 0.05

‡Hawaiian location mean is a 5-year average.

§Dry weight values calculated by multiplying fresh weight by

percentage fiber.
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At a similar latitude to Tifton, but 1400 km west (at

the 96th meridian), College Station had an overall

MDMY for all genotypes of 21.5 Mg ha�1 (Table 3).

Unlike the other sites, Ho06-9001 was not the highest

yielding type; instead, Ho72-114 and Ho02-144 had the

highest yields (24.4 and 22.4 Mg ha�1, respectively)

(Table 2). College Station was an irrigated site, and

yield depended heavily upon available water. Mean dry

matter yield of energycane genotypes increased 69%

from 2009 to 2010 and again in 2011 and 2014 (Table 3).

The greatest continental yields were observed at

Beaumont. Mean dry matter yield across all years was

39.3 Mg ha�1. Mean dry matter yields in 2014 and 2015

were significantly greater than all other years (50.3 and

50.2 Mg ha�1, respectively). These data would suggest

the increased yields noted in 2014 and 2015 were due to

an extra N fertilization event. From 2009 to 2013 and in

2015, 112 kg N ha�1 was applied in March, and

225 kg N ha�1 was accidently applied in April. In 2014,

the crop received 112 and 225 kg N ha�1, both applied

in March, with a third application of 225 kg N ha�1

applied in April. In addition, rainfall during the 2015

growing season was substantially greater than the mean

(115 vs. 77 mm, respectively).

In St. Gabriel, the greatest yields occurred in 2011 and

2015 (31.4 and 27.5 Mg ha�1, respectively). When calcu-

lated over all years, Ho06-9001 had the highest numeri-

cal MDMY (23.7 Mg ha�1), but it was not different from

Ho02-147 and Ho72-114 (22.2 and 22.3 Mg ha�1, respec-

tively).

The only truly tropical site, Waim�analo, joined the

program in 2009 because Hawaiian law prohibited the

importation of new sugarcane germplasm until 2008.

Propagation was delayed by heat treatments applied on

the mainland to destroy pathogens, and the material

was quarantined for one year. Waim�analo MDMY was

significantly affected by year, but no significant differ-

ences were noted among cultivars. Being tropical in

location, the Hawaiian site was not bound to seasonal

harvest. Harvest increments cycled roughly 12 months.

Generally, MDMY was the same from 2011 to 2014 and

declined in 2015 (37.4, 45.2 37.2, 41.0, and 29.7 Mg ha�1,

respectively).

PRISM-ELM yield estimates

Energycane field scientists from all sites and modeling

scientists from Oregon State University’s PRISM Cli-

mate Group, as well as Oak Ridge National Laboratory,

assembled together to generate the PRISM-ELM model

for energycane (Fig. 6). Yield data from each location

were combined with climatic parameters to determine

an assessment of yield at locations across the southern

United States. Looking at the figure, the PRISM-ELM

model for energycane suggests highest yields would be

expected in north central Florida and along the Gulf

Coast. The second order yields would be expected with

plantings south of 32° N and east of the 100th (W)

meridian. The five genotypes of energycane were tested

at 33° N. Initial dry matter yields were as high as Mis-

canthus and lowland switchgrass at the same location;

however, dry matter yields declined with time due to

relatively long winters and occasional cold weather (-

12 °C) for longer than 72 h.

The model shows average dry matter yield over time.

At every site, analysis of variance indicated year (winter

temperature or precipitation) was a significant con-

founding effect. It should be noted that as energycane is

planted farther north, it loses its yield advantage.

Colder winters and shorter growing seasons of the

‘northern’ areas (>32° N) reduce the growing season for

this tropical crop. Temperate biomass crops such as

Table 3 Average annual dry biomass yield (Mg ha�1) averaged over five energycane genotypes for eight locations between 2009

and 2015

Location

Year

Location average2009 2010 2011 2012 2013 2014 2015

Athens, GA 8.3 e* 24.4 b 6.2 e 22.8 bc 30.5 a 13.9 d 21.3 c 18.2 CD†

Tifton, GA 29.2 c 29.5 c 34.0 b 39.8 a 22.1 d 14.7 e 27.9 c 28.1 AB

Waim�analo, HI‡§ –‡ – 37.4 ab 45.2 a 37.2 bc 41.0 ab 29.7 c 38.1 A

St. Gabriel, LA§ 16.6 e 17.5 de 31.4 a 18.1 de 19.5 d 21.7 c 27.5 b 21.8 BC

Raymond, MS 17.5 a 12.3 b 11.6 b 13.7 ab 14.1 ab 17.5 a 16.8 a 14.8 D

Miss. State, MS 17.2 c 16.9 c 21.6 b 26.7 a 22.7 b 6.7 d 2.4 e 16.3 D

Beaumont, TX - 46.3 a 30.7 b 30.0 b 28.5 b 50.3 a 50.2 a 39.3 A

College Station, TX 13.6 d 22.9 bc 16.1 d 26.8 b 22.3 c 17.6 d 31.3 a 21.5 BCD

*lowercase letters indicate significant differences among year means within location at a = 0.05.

†UPPERCASE letters indicate significant differences among location means across all years at a = 0.05.

‡Hawaii entered the Feedstock Partnership late due to legislation and quarantine.

§Dry weight values calculated by multiplying fresh weight by percentage fiber.
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Miscanthus and lowland switchgrass adapted to these

latitudes exploit the reduced growing season and yield

as much as energycane.

Conservation Reserve Program (CRP) grassland

Biomass yields are summarized in Fig. 7 (Table S5).

Yield was significantly impacted by N rate, harvest tim-

ing, and year. Biomass yield increased as N fertilization

rate increased, and applying 112 kg N ha�1 yr�1 was an

agronomic best management practice (BMP) with respect

to biomass yield. The harvest timing that resulted in the

highest biomass yield over time was dependent on the

mixture of plant species, the number of harvests taken

(one- versus two-cut system), and the amount of precipi-

tation received during the growing season. The BMP for

harvest timing was site-specific, and biomass yields

under N rate and harvest timing BMPs were 1.6–3.5 and

3.7–6.4 Mg ha�1 for warm- and cool-season mixtures,

respectively, when averaged over time (Fig. 8). The effect

of year on biomass yield was mainly attributed to the

amount of precipitation received during the most critical

period of the growing season, with most locations expe-

riencing moderate to severe drought conditions for at

Fig. 6 Biomass yield potential of energycane for the United States generated using the PRISM-ELM model and based on in part on

Regional Feedstock Partnership Field Trials (red dots).
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Fig. 7 Average annual dry biomass yield of mixed grasses in the Conservation Reserve Program lands as affected by (a) N rate and

(b) harvest timing between 2008 and 2013. Yields were averaged across all harvest years. Harvest timings included peak standing

crop (PSC; at anthesis) and end of the growing season (EGS). Bars represent standard errors of the differences in means when ana-

lyzed by location (a = 0.05).
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least one season. This effect of year, and precipitation in

particular, highlighted the importance of conducting

long-term field studies to more accurately predict

expected biomass yields from CRP lands.

Of the three sites (MO, KS, and ND) that collected

sufficient species composition data, MO and KS had

fairly high percentages of legume (clover) species at the

beginning of the study (28.8% and 27.2%, respectively)

(Lee et al., 2013). Nitrogen fertilization negatively

affected legume composition at both sites, with higher

N rates resulting in significantly lower legume represen-

tation. For example, legume composition at MO was

lower after only 1 year of N application at

112 kg N ha�1. Best management practices for N fertil-

ity will need to be determined for each location based

on the mixture of plant species, particularly when

legumes are present. With respect to harvest timing,

warm-season grass composition tended to be higher

with EGS harvests, particularly switchgrass (Panicum

virgatum L.) and little bluestem (Schizachyrium scoparium

(Michx.) Nash) at KS and switchgrass and big bluestem

(Andropogon gerardii Vitman) at ND. This is not unex-

pected, as most warm-season grass species are fully

active and in the reproductive stages during the PSC

harvest window, which is one of the reasons for the rec-

ommendation of delaying harvest until after the plants

have sufficiently translocated nutrients to the below-

ground overwintering structures.

PRISM-ELM yield estimates

The PRISM-ELM map of feedstock production potential

of the CRP grassland was created based on data gener-

ated from the Feedstock Partnership field trials (Fig. 9),

using field-scale production management practices. The

PRISM-ELM model well represented the biomass yield

potential of the CRP grassland estimated from the Feed-

stock Partnership field trials. As the CRP grasslands

were not established for biomass production, data from

both the field trials and the PRISM-ELM model indi-

cated the feedstock production potential of the CRP

grassland is <4 Mg ha�1.

Discussion

Switchgrass

Switchgrass yields in these field settings did not reach

the levels often reported from small plot studies (Muir

et al., 2001; Vogel et al., 2002; Guretzky et al., 2011;

Rogers et al., 2012). In some cases, initial yields were

hampered by factors that hindered establishment. In

particular, weed pressure at the VA and SD locations

resulted in stand density percentages below 30% the

first year after planting (Fike et al., 2017); however, these

stands improved over time as is commonly the case

with switchgrass. Stand failure occurred over two con-

secutive years at the AL location, likely due to residual

herbicide in the soil that was not known to the research-

ers. Utility of marginal land for energy production sys-

tems remains questionable given challenges for

establishment and yields that may be lower than desir-

able. The subpar establishment rates that arose at sev-

eral sites in this study would negatively influence

economic outcomes in a real-world setting and point to

challenges for deploying biomass systems on marginal

sites with difficult edaphic conditions, seed banks laden

with weed seeds, or both. Although manageable, these

issues present additional costs in terms of lower yield

with the slow establishment or the cost of weed control.
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Fig. 8 Average annual dry biomass yields of (a) warm-season and (b) cool-season grasses on Conservation Reserve Program lands

between 2008 and 2013. Overall mean yields were averaged across years, N rates and harvest timings, and best management practices

(BMP) were site specific and based on the harvest timing (peak standing crop at KS and MT, end of the growing season at other sites)

and N rate (112 kg N ha�1 at all sites) with the highest mean dry biomass yield over time. Bars represent standard errors of the dif-

ferences in means when analyzed by location (a = 0.05).
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Of course, the value of a ton of switchgrass will remain

the key driver for feasibility for marginal land use and

fertilization inputs (Fike et al., 2017).

Data from these studies provide greater understand-

ing of the year-to-year and site-to-site variability in

switchgrass production than is available with other

published research. The multiple years encompassed by

this work also show changes in yield and N utilization

that would not have been observable with shorter-term

research. Switchgrass response to N is highly variable,

but early yields (first 1–3 years) are likely to increase

with added N when initial N fertility is low, as was sug-

gested by this study. Our data also indicate that with

soils of even moderate fertility, it may take several years

of harvesting to reach a point at which N applications

are beneficial or economical.

Miscanthus

Our results indicate that yields can be achieved and sus-

tained at or above 15 Mg ha�1 across most years, loca-

tions, and fertilizer treatments, and that certain

conditions can allow plants to substantially outperform

this baseline standard. For example, after the third har-

vest, plots in IL and NJ responded to moderate fertiliza-

tion to produce yields greater than 25 Mg ha�1. From

these data, we can conclude that a moderate fertilization

treatment should be sufficient to augment yield in most

locations and years, and that any additional fertilizer

would be unnecessary, not cost-effective, and

potentially harmful to the surrounding environment as

nitrous oxide gas or nitrate leaching (Behnke et al., 2012;

Davis et al., 2014). Furthermore, it appears that any

amount of nitrogen will be unnecessary in many loca-

tions, at least within the first four growing seasons.

Winterkill occurred in the Illinois and Indiana first-

year (2008) plantings and can be a concern when plant-

ing M. 9 g. in northern locations. It can be speculated

that the late fall 2008 warm, wet conditions that were

immediately followed by a great temperature drop were

the possible cause. Additionally, rhizome freezing death

has been reported by Lewandowski et al. (2000) in a

study that found 50% of M. 9 g. rhizomes were killed

at �3.4 °C. Also, first-year M. 9 g. plantings commonly

remain green and actively growing longer into the

autumn than plants in subsequent growing seasons,

making autumn freezes a concern (Author observation).

The later growth of first-year plants can possibly be

attributed to ground that remains warmer in first-year

plantings due to the lack of shade and layer of insulat-

ing straw that are found in older plantings.

When entered into a PRISM-ELM model, our data

indicated that much of the Eastern United States is suit-

able for sustained Miscanthus yields of 18 Mg ha�1 or

greater. These variations are primarily attributed to

weather and site differences, but have not been substan-

tial across this study. The low Miscanthus productivity

in the southeast indicated by the PRISM-ELM model

was also found by Fedenko et al. (2013) and Kiniry et al.

(2013). In summary, our results suggest that Miscanthus

Fig. 9 Biomass yield potential of mixed grasses in the Conservation Reserve Program lands for the United States generated using

the PRISM-ELM model and based in part on Regional Feedstock Partnership Field Trials (red dots).
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can be a viable energy crop in an expanded region

across many portions of the central-eastern United

States.

Sorghum

Sorghum can produce high biomass yields on an annual

basis across a wide range of the country, but producers

and processors must recognize that yield variation due

to environmental conditions is real and will affect bio-

mass yields. When yield stability, production season,

and the economics of production are considered, the

best locales for the production of biomass sorghum

appear to be in the southeastern United States from East

Texas to the Atlantic Coast. Ultimately, biomass produc-

tion of any type for bioenergy conversion will be deter-

mined by the profitability of the crop relative to other

crop production options.

This modeling effort identifies where energy sorghum

will have the highest yield, but yield per se does not

mean that energy sorghum will be grown. Within

regions, other factors such as existing cropping systems,

infrastructure, and economics will strongly influence

where the crops are produced. While the model does

account for long-term moisture patterns in the form of

an average, it does not reflect the stability of yield from

year to year. For insight into this variation, Gill et al.

(2014) clearly demonstrated greater variability in the

drier regions, and increased variability in production

increases risk in biomass supply to processing facility.

These factors must be considered when evaluating yield

production maps for any of the bioenergy crops.

Energycane

Energycane can produce MDMY of 23–25 Mg ha�1

year�1 at the most northern locations (33° N latitude)

and in excess of 37 dry Mg ha�1 yr�1 reliably at the

Gulf Coast locations. As energycane is tropical in origin,

it does not undergo fall senescence-like Miscanthus and

lowland switchgrass. A freezing event (�6 °C) traps

nutrients in the above-ground biomass; many of these

nutrients are removed at harvest. At the northerly loca-

tions, energycane stem moisture concentration was

~710 g kg�1 before a killing frost, but increased to about

790 g kg�1 after freezing temperatures (data not

shown). When a killing frost is experienced, leaves are

damaged, but the stem and roots remain alive and

active. We suspect that osmotic tension and roots (pro-

tected from the cold temperatures by the insulating

effects of the soil) continue to push water to the aerial

stem of the plant. Dead leaves, failing transpiration,

cause stem moisture to increase after the freeze events.

Infrastructure and equipment to handle this type of

heavy wet biomass can be found in the sugarcane grow-

ing areas, but not at the northern locations.

At the more northerly locations, extremely cold win-

ters limited energycane production. However, these

locations allowed the breeders at the Sugarcane

Research Unit to differentiate between lines that were

more cold-hardy. In spite of being located within exist-

ing sugarcane production regions, most disease and

insect pressure was negligible, with the exception of the

presence of sugarcane borer (Diatraea saccharalis) and

Mexican rice borer (Eoreuma loftini) at Beaumont. Sugar-

cane aphid (Melanaphis sacchari) was noted at several

locations beginning in 2013, including Mississippi State,

but they infested sweet sorghum more heavily than

energycane.

While concentration is not as great as sugarcane, ener-

gycane stems contain substantial amounts of sugar

(especially the pithy type, Ho72-114) that can be

exploited through extraction (pressing) or via in situ fer-

mentation. °Brix varies greatly due to location and envi-

ronment within location. The only factor consistent for

°Brix was Ho06-9001 and Ho06-9002 (woody types) pro-

vided less sap with lower °Brix than the other energy-

cane types.

Conservation Reserve Program (CRP) Grassland

Conservation Reserve Program lands may represent an

important resource for producing cellulosic bioenergy

feedstock without competing for land with food, feed,

and fiber production. Our long-term field study during

2008–2013 indicates that the annual biomass yield was

2.82 Mg ha�1 for warm-season mixture CRP land and

5.10 Mg ha�1 for cool-season mixture CRP land under

best management practices (Anderson et al., 2016).

Nitrogen fertilization is the key agronomic management

factor determining biomass yield on CRP land, but

applications of 112 kg N ha�1 are probably not the best

economic practice with such low biomass production.

Therefore, it is very important to conduct economic

analyses based on rental payments, input costs includ-

ing fertilizer, biomass yield, and price received for bio-

mass (Anderson et al., 2016).

By far, the greatest impacts on seasonal biomass pro-

duction and changes in vegetation composition were

due to location-specific precipitation. Except for the KS

site, these yields were approximately three times higher

than those projected in the PRISM-ELM model map, but

align fairly closely with the estimates from the Billion

Ton Update (United States Department of Energy,

2011). One of the main concerns about using CRP lands

for feedstock production, besides losing the original

benefits of the CRP, was species composition change,

which could negatively impact long-term sustainability
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of CRP lands. The results demonstrate that CRP land

will shift vegetative composition over time based on

harvest and fertilization management for biomass feed-

stocks (Harmoney et al., 2016). Any shift by mismanage-

ment over time to less desirable or less productive

species will hinder the ability of CRP land to adequately

provide a sustainable or reliable resource for bioenergy

feedstock production. Harvest and nitrogen fertility

management did not significantly impact species com-

position of mixtures dominated by cool-season species,

other than a decline of legume species under nitrogen

fertilization. However, harvest timing significantly

impacted mixtures dominated by warm-season species,

with a decline of desirable species by early harvesting

(peak standing crop) over time (Harmoney et al., 2016).

A considerable amount of land in the United States is

under CRP contract, but this number is decreasing as

farmers respond to higher price signals in grain mar-

kets. Finding a profitable production system for this

land that would continue to provide the economic ser-

vices proposed in the program would not only feed an

emerging cellulosic biofuel industry, but also protect

environmentally sensitive land and improve soil and

water quality. The CRP was originally established for

soil and water conservation (Glaser, 1986), not biomass

production. However, CRP land is a potentially impor-

tant land resource for sustainable biomass feedstock

production. Accordingly, in order for CRP lands to be a

reliable source of sustainable biofuel feedstock, manage-

ment considerations must be taken into account that can

produce sustainable stands of desirable species and pro-

vide ongoing conservation services.

Conclusion

Understanding the agronomic and economic perspec-

tives of key feedstock species will be critical, making

long-term farm-scale research (similar to the studies

conducted under the Feedstock Partnership) an impera-

tive moving ahead. Based on nonirrigated trials of these

herbaceous species and CRP mixtures, the eastern half

of the United States (basically east of the 100th merid-

ian) and isolated locations west of this area are capable

of producing significant biomass for a national bioecon-

omy utilizing at least one of these species (Fig. 10). The

rapid reduction in yields west of the 100° W meridian

correlates directly with the reduction in annual rainfall.

The work of the Feedstock Partnership expands our

previous understanding of the bioenergy potential of

switchgrass, Miscanthus, sorghum, energycane, and

CRP mixtures. Previous knowledge was based primarily

on small-scale and short-term studies that lacked real-

world applicability. Results from 5 to 7 years of research

across a wide variety of locations indicate where each of

Fig. 10 Maximum average annual yield potential of herbaceous feedstocks (switchgrass, Miscanthus, sorghum, energycane, and

Conservation Reserve Program mixtures) across the continental United States. Yield potential shown on this map is that of the highest

of all species evaluated at a given location in the United States. This map was generated using the PRISM-ELM model and is based in

part on data from Feedstock Partnership Field Trials.
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these species will perform best, aiding in decisions about

feedstock selection. For example, Miscanthus and ener-

gycane attained the greatest yields, but other species

may be preferable in locations where Miscanthus and

energycane were not tested or were less successful, such

as colder northern sites. The study also revealed that in

some instances nitrogen fertilizer increased yield of bio-

mass feedstocks to which it was applied, especially

where soil N was naturally low prior to application, but

it was not generally beneficial to apply it at the highest

rate. Farmers can reduce production expenses and

decrease environmental risks associated with over-

application of N by tailoring their N application rates

according to these results and their specific situation.

Several of the feedstocks were difficult to establish due

to mortality and weed problems. Research on improving

establishment rates is needed, including research to

identify and label effective herbicides for each feedstock.

Furthermore, the work of the Feedstock Partnership has

provided decision makers at all levels with updated,

real-world data that could improve adoption and

management of perennial bioenergy cropping systems.

The raw data provided with this report allow for the

possibility of further analysis and deeper investigation.
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