60 research outputs found

    Hydrodynamic-Pressure-Induced Elastic Deformation of Thrust Slide-Bearings in Scroll Compressors and Oil Film Pressure Increase Due to Oil Envelopment

    Get PDF
    This paper presents the concept of the Elasto-Hydrodynamic Lubrication?EHL?of thrust slide-bearings in scroll compressors, resulting in the superior lubrication characteristics of these bearings. The thrust plate undergoes elastic deformation due to axial loading, resulting in the formation of a uniform fluid wedge between the orbiting and fixed thrust plates. This wedge region has very high induced oil film pressure, which explains the remarkably good lubrication characteristics of the thrust slide-bearing. Furthermore, the high oil film pressure induces further local elastic deformation of the thrust plate, forming an EHL oil pocket with the thrust plate and a further increase in the oil film pressure between the sliding surfaces due to this oil envelopment. The formation of the EHL pocket was confirmed using FEM analysis and lubrication tests on the elastic deformation of the thrust plate. Subsequently, the additional increase in oil film pressure, due to the EHL pocket effect, was examined in computer simulations applying the average Reynolds equation for the boundary of elastic deformation of the thrust plate. In these studies, a 6.7% increase in oil film pressure was ascertained for a small cooling capacity scroll compressor driven at 3600 rpm with 0.1 kW motor. The oil envelopment contributes to the superior lubrication performance of the thrust slide bearings scroll compressors

    Optimization of EHL Lubrication Performance in Thrust Slide-Bearings of Scroll Compressors

    Get PDF
    Previous studies [Refs. 1, 2] revealed the formation of a uniform oil wedge at the periphery of the thrust plate, caused by the elastic deformation of the orbiting thrust plate due to the pressure difference across the orbiting thrust plate, is a significant factor in the high lubrication performance in thrust slide-bearings. In addition to the uniform wedge formation, the high oil film pressure also induces a local elastic deformation of the fixed thrust plate normal to its surface. The normal thrust plate deformation and the oil wedge effectively form an elasto-hydrodynamic-lubrication (EHL) pocket, even more effectively increasing the oil film pressure between the sliding surfaces, due to the envelopment of the oil, as confirmed in our companion paper [3], and an earlier, less-detailed contribution [4]. The present study focuses on aspects of EHL that have both positive and negative effects on the lubrication performance of the thrust slide-bearings in scroll compressors. Theoretical calculations using the average Reynolds equation and Patier-Chen solid contact theory, for the boundary of the local elastic deformation of the thrust slide-bearing, were conducted for a small cooling capacity scroll compressor driven at 3600 rpm with 0.1 kW. An approximate method was developed using characteristic curves to determine the oil film axial force, the average oil film thickness, the frictional force and the frictional coefficient. The calculations considered a variety of pressure differences due to the operation pressure and the thickness of thrust plate. Also cases with a fixed uniform wedge angle at the periphery were calculated. The calculated results suggest a possible maximum reduction in frictional coefficient of about 55% compared to that with a fixed uniform wedge angle. The reduction rate increases with decreasing thrust plate thickness, which, however, restricts the operation pressures to a lower pressure range. Design guidelines for optimizing EHL will be suggested. References: [1] Oku, T., Ishii, N., Anami, K., Knisely, C.W., Sawai, K., Morimoto, T., Hiwata, A. : Theoretical Model of Lubrication Mechanism in the Thrust Slide-Bearing of Scroll Compressors, HVAC&R Research Journal ASHRAE Vol.14, No.2, pp.239-358, 2008-3. [2] Ishii, N., Oku, T., Anami, K., Knisely, C.W., Sawai, K., Morimoto, T., Iida, N. : Experimental Study of the Lubrication Mechanism for Thrust Slide Bearings in Scroll Compressors, HVAC&R Research Journal ASHRAE Vol.14, No.2, 2008-4. [3] Ishii, N., Tsuji, T., Anami, K., Nokiyama, K., Morimoto, T., Sakuda, A., Oku, T., Sawai, K., Knisely, C.W., : “Hydrodynamic-Pressure-Induced Elastic Deformation of Thrust Slide-Bearings in Scroll Compressors and Oil Film Pressure Increase Due to Oil Envelopment,” abstract submitted to 2014 Purdue Herrick Conferences. [4] Ishii, N., Tsuji, T., Oku, T., Anami, K., Knisely, C.W., Nokiyama, K., Morimoto, T., Sakuda, A., Sawai, K. 2012 “Elasto-Hydrodynamic Lubrication Effect in Thrust-Slide Bearings of Scroll Compressors,” 2012 Purdue Conference Paper on (Paper 1438)

    Flexible polyandry in female flies is an adaptive response to infertile males

    Get PDF
    Infertility is common in nature despite its obvious cost to individual fitness. Rising global temperatures are predicted to decrease fertility, and male sterility is frequently used in attempts to regulate pest or disease vector populations. When males are infertile, females may mate with multiple males to ensure fertilization, and changes in female mating behavior in turn could intensify selection on male fertility. Fertility assurance is a potentially wide-spread explanation for polyandry, but whether and how it actually contributes to the evolution of polyandry is not clear. Moreover, whether a drop in male fertility would lead to a genetic increase in polyandry depends on whether females respond genetically or through behavioral plasticity to male infertility. Here, we experimentally manipulate male fertility through heat-exposure in Drosophila pseudoobscura, and test female discrimination against infertile males before and after mating. Using isogenic lines, we compare the roles of behaviorally plastic versus genetically fixed polyandry. We find that heat-exposed males are less active and attractive, and that females are more likely to remate after mating with these males. Remating rate increases with reduced reproductive output, indicating that females use current sperm storage threshold to make dynamic remating decisions. After remating with fertile males, females restore normal fecundity levels. Our results suggest that male infertility could explain the evolution of adaptively flexible polyandry, but is less likely to cause an increase in genetic polyandry

    Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory

    Get PDF

    キシュ ショクブツ ト ノ カカワリ カラ ミタ カンザワハダニ ノ ホショク カイヒ

    No full text
    京都大学0048新制・課程博士博士(農学)甲第12360号農博第1541号新制||農||924(附属図書館)学位論文||H18||N4118(農学部図書室)24196UT51-2006-J352京都大学大学院農学研究科地域環境科学専攻(主査)教授 髙藤 晃雄, 教授 武田 博清, 教授 藤崎 憲治学位規則第4条第1項該当Doctor of Agricultural ScienceKyoto UniversityDA

    Precopulatory mate guarding influences the development of quiescent deutonymph females in the two-spotted spider mite (Acari : Tetranychidae)

    No full text
    Individuals of some organisms have a specific stage sensitive to environmental cues that initiate developmental plasticity which subsequently influences their entire development. Females may use male behaviour such as precopulatory mate guarding as an environmental cue to change their developmental rate. In the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae), only the first insemination results in fertilization and males guard quiescent deutonymph females. As quiescent individuals take on a silvery appearance before moulting, the period of the quiescent stage can be divided into two parts: from entering the quiescent stage to becoming silvery (1st period) and from becoming silvery to moulting (2nd period). Females may be sensitive to precopulatory mate guarding immediately before moulting (i.e. 2nd period). Thus, I examined whether precopulatory mate guarding during either period affects the total developmental duration of quiescent deutonymph females. When guarded by a male, the whole developmental duration of the quiescent deutonymph females became significantly shorter (by 3-5 %) than that of solitary ones, regardless whether the guarding occurred during the 1st period, the 2nd period or both periods. In conclusion, quiescent deutonymph T. urticae females use precopulatory mate guarding by conspecific males as an environmental cue for their developmental rate, although they are sensitive to the mate guarding not only immediately before moulting.</p
    corecore