11 research outputs found

    Conscious voiding during bladder obstruction in guinea pigs correlates with contractile activity of isolated bladders

    Get PDF
    © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. Following 12 month embargo from date of publication (10 August 2015) in accordance with publisher copyright policy

    A comparison in a youth population between those with and without a history of concussion using biomechanical reconstruction

    Get PDF
    OBJECTIVE: Concussion is a common topic of research as a result of the short- and long-term effects it can have on the affected individual. Of particular interest is whether previous concussions can lead to a biomechanical susceptibility, or vulnerability, to incurring further head injuries, particularly for youth populations. The purpose of this research was to compare the impact biomechanics of a concussive event in terms of acceleration and brain strains of 2 groups of youths: those who had incurred a previous concussion and those who had not. It was hypothesized that the youths with a history of concussion would have lower-magnitude biomechanical impact measures than those who had never suffered a previous concussion. METHODS: Youths who had suffered a concussion were recruited from emergency departments across Canada. This pool of patients was then separated into 2 categories based on their history of concussion: those who had incurred 1 or more previous concussions, and those who had never suffered a concussion. The impact event that resulted in the brain injury was reconstructed biomechanically using computational, physical, and finite element modeling techniques. The output of the events was measured in biomechanical parameters such as energy, force, acceleration, and brain tissue strain to determine if those patients who had a previous concussion sustained a brain injury at lower magnitudes than those who had no previously reported concussion. RESULTS: The results demonstrated that there was no biomechanical variable that could distinguish between the concussion groups with a history of concussion versus no history of concussion. CONCLUSIONS: The results suggest that there is no measureable biomechanical vulnerability to head impact related to a history of concussions in this youth population. This may be a reflection of the long time between the previous concussion and the one reconstructed in the laboratory, where such a long period has been associated with recovery from injury

    Stimulation of extrinsic sympathetic nerves differentially affects neurogenic motor activity in guinea pig distal colon

    No full text
    Abstract The speed of pellet propulsion through the isolated guinea pig distal colon in vitro significantly exceeds in vivo measurements, suggesting a role for inhibitory mechanisms from sources outside the gut. The aim of this study was to investigate the effects of sympathetic nerve stimulation on three different neurogenic motor behaviors of the distal colon: transient neural events (TNEs), colonic motor complexes (CMCs), and pellet propulsion. To do this, segments of guinea pig distal colon with intact connections to the inferior mesenteric ganglion (IMG) were set up in organ baths allowing for simultaneous extracellular suction electrode recordings from smooth muscle, video recordings for diameter mapping, and intraluminal manometry. Electrical stimulation (1–20 Hz) of colonic nerves surrounding the inferior mesenteric artery caused a statistically significant, frequency‐dependent inhibition of TNEs, as well as single pellet propulsion, from frequencies of 5 Hz and greater. Significant inhibition of CMCs required stimulation frequencies of 10 Hz and greater. Phentolamine (3.6 μM) abolished effects of colonic nerve stimulation, consistent with a sympathetic noradrenergic mechanism. Sympathetic inhibition was constrained to regions with intact extrinsic nerve pathways, allowing normal motor behaviors to continue without modulation in adjacent extrinsically denervated regions of the same colonic segments. The results demonstrate differential sensitivities to sympathetic input among distinct neurogenic motor behaviors of the colon. Together with findings indicating CMCs activate colo‐colonic sympathetic reflexes through the IMG, these results raise the possibility that CMCs may paradoxically facilitate suppression of pellet movement in vivo, through peripheral sympathetic reflex circuits
    corecore