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ABSTRACT 

 

Purpose: There are many hypotheses accounting for detrusor overactivity, however the exact 

mechanisms are still incompletely understood. We used a model of bladder outlet obstruction 

in male guinea pigs as a way to produce detrusor overactivity. The objective was to determine 

whether changes in voiding of obstructed guinea pigs correlates with specific changes in 

contractile activity of their isolated bladders in vitro.  

Material and methods: Conscious voiding activity of sham-operated and obstructed animals 

was measured in metabolic cages. Contractile activity (spontaneous or evoked by distension, 

electrical field stimulation or cholinergic agonists) was recorded via a pressure transducer in 

the isolated bladders in vitro.  

Results: The frequency of conscious voiding increased (while voiding volume decreased) in 

the obstructed group, compared with the sham-operated group, 4 weeks after surgical 

intervention. In comparison to the sham-operated animals, the bladders from the obstructed 

guinea pigs were enlarged and inflamed, their frequency of spontaneous contractions was 

higher, while the amplitudes of electrical field stimulation (EFS)-induced contractions and 

bladder compliance were lower. Changes in conscious voiding during obstruction were 

significantly associated with alterations in structural parameters (bladder weight, thickness 

and histological damage score) and functional contractile parameters (frequency of 

spontaneous contractions, amplitude of EFS-induced contractions and bladder compliance) of 

their isolated bladders.  

Conclusions: Our findings revealed significant association between conscious voiding and 

structural and contractile activity changes of the isolated bladders in obstruction. The data 

suggest that change in contractile activity of the bladder itself is a major contributor to 

obstruction-induced bladder overactivity. 

 

 

 

 

 

Keywords: bladder, obstruction, overactivity, contraction, smooth muscle 



 3 

 

1. Introduction 

 

Bladder outlet obstruction is a common problem for the aging men.  In most cases it caused 

by enlarged prostate gland due to benign prostatic hyperplasia, results in the development of 

lower urinary tract symptoms (Nordling, 2002; Roehrborn, 2011). Patients with bladder 

outflow obstruction suffer from storage dysfunction, with symptoms similar to overactive 

bladder syndrome (OAB, such as urgency, frequency, nocturia and in some cases, urge 

incontinence) as well as voiding dysfunction, with symptoms such as straining, intermittency, 

dribbling, incomplete bladder emptying and a weak urinary stream (Levin et al., 2000; 

Nordling, 2002; Roehrborn, 2011). Recorded in human urodynamic diagnostic studies, 

detrusor overactivity (DO, i.e. non-voiding involuntary detrusor contractions during urine 

storage phase) is usually responsible for OAB with urge incontinence. In males, bladder outlet 

obstruction is the most likely cause of DO (Nordling, 2002; Mirone et al., 2007; Oelke et al., 

2008). 

 

The partially obstructed animal bladder, caused by mechanical obstruction induced by 

narrowing of the urethra, is a well-established model of the bladder outlet obstruction in men 

with benign prostatic hyperplasia and is also widely used as model for DO (Mirone et al., 

2007; Parsons and Drake, 2011). As for benign prostatic hyperplasia patients, the resulting 

changes in urodynamic function in animal models of bladder obstruction depend on the extent 

and duration of obstruction. They range from bladder overactivity to bladder underactivity. In 

human patients with bladder outflow obstruction, as well as in animal models, bladder 

dysfunction develops through several stages: (i) an increase in bladder mass accompanied by 

smooth muscle hypertrophy, urothelial and fibroblast proliferation; (ii) a compensatory phase 

where bladder mass stabilizes, pressure either remains normal or increases; (iii) a 

decompensated fibrotic, high pressure bladder with progressive inability to empty (Levin et 

al., 2000; Metcalfe et al., 2010). In the early stages of bladder outlet obstruction, partially 

obstructed animal bladder models closely mimic human DO and OAB. Notwithstanding the 

interspecies variability in morphological and functional properties of the bladder, the 

increases in spontaneous myogenic activity, non-voiding contractions and voiding frequency 

have been demonstrated in many species (Sibley, 1987; Mostwin et al., 1991; Igawa et al., 

1994; Drake et al., 2003; Kubota et al., 2008; Baker et al., 2010). 

 

The mechanisms of DO and OAB symptoms such as urgency and frequency are still poorly 

understood. Several hypotheses have been put forward, including neurogenic, myogenic and 

autonomous bladder hypotheses which are not mutually exclusive. The neurogenic theory 

proposes that changes in the CNS micturition pathways including damage of descending 

inhibitory pathways, enhanced excitatory transmission in micturition reflex pathways, and/or 

sensitisation of bladder afferents could be involved (de Groat, 1997). The myogenic 

hypothesis proposes that detrusor muscle itself becomes more excitable and more 

spontaneously active (Brading, 1997). The overlapping autonomous (integrative) bladder 

hypothesis suggests that increased local micromotions distort small regions of the bladder 

wall prior to micturition, over-stimulating afferent nerves and thus giving rise to an increase 

sensation of urgency (Coolsaet et al., 1993; Drake et al., 2001).  
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It has been established in human studies that 74% of patients with urgency and urgency 

urinary incontinence (OAB wet) had DO (Hashim and Abrams, 2006) and symptoms of 

urgency incontinence strongly correlate with DO (Hyman et al., 2001). However, non-voiding 

contractions during storage phase have been recorded during ambulatory urodynamics in 38% 

of healthy volunteers and only few described urgency associated with the detrusor 

spontaneous activity (Robertson, 1999). In addition, no correlation was found between 

amplitude of involuntary detrusor contractions and subjective report of urgency in patients 

with OAB symptoms (Romanzi et al., 2001). DO is a common (50-75%) urodynamic 

occurrence in patients with bladder outflow obstruction due to benign prostatic hyperplasia 

(Robertson, 1999; Nordling, 2002; Oelke et al., 2008). It is still not completely understood 

which particular changes in contractile activity of the bladder during urine storage phase 

could be responsible for OAB symptoms in patients with bladder outflow obstruction. So far, 

this important question has not been addressed in animal models of bladder outlet obstruction. 

In the present study, we have used a model of gradual bladder obstruction
 
(Mostwin et al., 

1991) where a loose ring was placed around the proximal urethra of immature male guinea 

pigs and obstruction developed gradually over four weeks, as the guinea pig matured. We 

have compared conscious voiding pattern in the sham-operated and obstructed groups of 

guinea pigs and then have measured spontaneous, distension-, electrical field stimulation 

(EFS)- and cholinergic agonist-induced contractile activity of isolated bladders taken from the 

same animals. The main aim of the study was to determine whether changes in conscious 

voiding observed in obstructed guinea pigs correlates with specific changes in contractile 

activity of their isolated bladders in vitro. 

 

2. Materials and methods 

 

2.1 Bladder obstruction procedure 

 

We used slightly modified method of gradual partial bladder outflow obstruction described in 

male guinea pigs (Mostwin et al., 1991). Briefly, under isoflurane (2%) anaesthesia, after 

locating distal bladder neck, a polyethylene catheter (1.52 mm external diameter) was used as 

a spacer, and placed alongside the junction of distal bladder neck and proximal urethra of the 

immature (around 5 weeks of age) male guinea pigs. A 3.0 silk thread was tied around both 

the junction and the catheter, giving a loop with a total diameter of around 2 mm. Then the 

catheter was removed, leaving the loop in place. Note that this procedure did not narrow the 

proximal urethra at the time of operation. This allows obstruction to develop gradually as the 

animal matures over 4 weeks. To determine whether damage to the bladder neck during 

surgical intervention contributed to changes in voiding, a control group of sham-operated 

animals underwent the same surgical operation and dissection as obstructed group, but with 

the ligature removed before closing the abdomen and skin. The weight of animals in the 

obstructed and sham-operated groups were not different (241 ± 3.2 g, n=35 and 247 ± 3.8 g, 

n=34, respectively) prior to surgery. Control untreated animals were matched by age (around 

9 weeks) to the obstructed and sham-operated groups. All experimental procedures 

undertaken in this study were approved by the Animal Welfare Committee of Flinders 

University. 

 

2.2 Conscious voiding in a metabolic cage 
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Spontaneous voiding of the sham-operated and obstructed guinea pigs was measured in 

metabolic cages over a 6 hour period under the lights prior to operation and 1-4 weeks after. 

Sham-operated guinea pigs served as a control to obstructed animals. No conscious voiding 

measurements were performed for the age-matched untreated control guinea pigs. The voided 

urine was collected in a cup connected to a force transducer (Grass Force-displacement 

transducer FT03, Grass Instruments, Quincy, Mass, USA) for measurement of volume and 

frequency of conscious micturition. Since specific gravity of the guinea pig urine is 1.015 

(Hawkins et al., 2009), for volume measurement we assumed that 1g = 1ml for the sham-

operated and obstructed groups. 

 

 

2.4 Whole bladder in vitro 

The day following measurements of conscious voiding the bladder was removed from the 

humanely killed animals in both the obstructed and sham-operated groups. Both ureters were 

ligated and a 2 mm o.d. stainless steel cannula was inserted into the urethra and tied securely 

in place.  The bladder was flushed gently 2-3 times with Krebs solution and placed in an 

organ bath (150 ml volume) containing Krebs solution of following composition (in mM): 

NaCl, 118; KCl, 4.75; NaH2PO4, 1.0; NaHCO3, 25; MgSO4, 1.2; CaCl2, 2.5; glucose, 11; 

bubbled with 95 % O2 - 5 % CO2 and maintained at around 37° C.  The cannula was attached 

to a T-piece adaptor, the left arm of which was connected to a syringe pump (SP200, WPI, 

USA) to allow the slow infusion of Krebs solution. The right arm of the T-piece was 

connected to a pressure transducer (Viggo-Spectramed model P23XL, Oxnard, CA, USA).  

Intravesical pressure was recorded on a Maclab/8s data acquisition system with Chart 7 

software (ADInstruments, Castle Hill, NSW, Australia) using an iMac computer running OSX 

10.7.1. To record spontaneous contractile activity, all isolated bladders were slightly pre-

distended with 0.75 ml of Krebs solution (Zagorodnyuk et al., 2009) and bladders were 

allowed to equilibrate for at least 30 minutes before experiments.  Bladder distensions (at 0.5 

ml/min) were performed 4-5 times at 15 minutes interval until two last responses were similar 

(Zagorodnyuk et al., 2009). In the control and sham-operated groups, 2.2 ml infusions were 

performed, followed by manual emptying of the 2.2 ml of infusate, before the next infusion. 

So, in most cases, maximal intravesical volume was ~ 3ml (including residual 0.75ml volume) 

which was slightly less that average voiding volume (3.56 ± 0.24 ml, n=32) measured in 

control conscious guinea pigs. Using this protocol, minimal change in basal pressure during 

bladder distension was seen in control guinea pigs (see Fig. 2A). In 30% cases in the 

obstructed group, the infusion was stopped earlier at 0.5-1.4 ml since baseline pressures 

exceeded 20-50 cmH2O. In all cases, bladder compliance in vitro was calculated as change in 

bladder volume (i.e. infused volume) divided by corresponding change in basal bladder 

pressure (in ml/cmH2O).  

 

The amplitude, frequency and area under the curve (AUC) of each individual phasic 

contractions were measured. A single phasic contraction was defined as a contraction with 

amplitude greater than 0.1 cmH2O that returned to the baseline level. Since both frequency 

and amplitude of spontaneous contractions were increased with bladder distension, only AUC 

was calculated for phasic distension-evoked contractions in vitro.  In majority of preparations, 

the frequency response curve, in response to EFS, was constructed by repetitive stimulation 
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(1-30 Hz for 3 s, 0.15 ms, 100V) applied via two platinum plates placed on either side of the 

bladder. Usually the bladder responses to a second frequency response curve, generated after 

an interval of 15 min, were similar to the first one; if not, a 3
rd

 curve was constructed. In some 

preparations, bethanechol or physostigmine concentration-response curves, measured as AUC 

in units of cmH2O.s during 3 min periods at the end of each concentration-response, were 

obtained 30 min after EFS.  

 

 

2.5 Alterations at histological level 

 

At the conclusion of organ bath experiments, bladders were opened, weighed and transferred 

to a Petri dish, containing phosphate-buffered saline, where they were maximally stretched 

and pinned around the perimeter as an open, flat sheet. After overnight fixation in 4% 

paraformaldehyde, a small strip (~5x30 mm) of full thickness bladder wall was taken at the 

medial axis of the posterior bladder wall, extending just above proximal urethra and up to the 

bladder apex. The strip was embedded in Paraplast paraffin wax, sectioned at 5 μm and 

stained with haematoxylin and eosin. Photomicrographs were taken using a QImaging RTV 5 

megapixel digital camera with an Olympus BX50 brightfield microscope using x4 or x40 

objectives. The thickness of the mucosa (including urothelium and lamina propria), smooth 

muscle and adventitia layers of the bladders were calculated in three randomly selected fields 

from the middle part of the section from each guinea pig. Mean histological damage score was 

calculated as sum of scores for infiltration of white blood cells (WBCs), and presence of small 

hemorrhages (tissue red blood cells, RBCs) in the connective tissue of the lamina propria, 

smooth muscle and adventitia and for bladder edema in the lamina propria. The severity of 

lesions in the urinary bladder, analysed by a blinded observer using the x40 objective, was 

graded as followed: infiltration of WBCs defined as 0 (0-2 cells), 1 (2-10 cells) as mild, 2 

(>10) as severe; presence of RBCs defined as 0 (0 cells), 1 (a few cells) as mild, 2 (abundant 

cells in the tissue) as significant; edema score: 0 (no), 1 (yes). 

 

 

2.6 Drugs 

 

Physostigmine (eserine) hemisulfate, betanechol, hyoscine [(-) scopolamine] hydrobromide, 

tetrodotoxin and PPADS were obtained from Sigma (St. Louis, MO, USA). 

 

 

2.7 Data analysis 

 

Results are expressed throughout as means ± standard error of the mean, with n referring to 

the number of animals.  Statistical analysis was performed by analysis of variance (one way 

ANOVA) using Prism v.6 software (GraphPad Software, Inc., San Diego, CA, USA). To see 

whether any parameters of contractile activity correlate with each other and with conscious 

voiding, a series of partial correlations, factor analyses and discriminant analyses
 
(Norusis, 

1993; Tabachnick and Fidell, 1996) were carried out with SPSS v19. Differences were 

considered significant if P<0.05. 
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3. Results 

 

3.1 Conscious voiding 

 

 
The voiding frequency of the obstructed guinea pigs (n=19) was significantly greater than 

control measurements taken from the same animals before surgery. When compared with the 

sham-operated animals, frequency of voiding was also significantly higher at 2, 3 and 4 weeks 

following obstruction. For example, at week 4, the number of voids during the 6 hour 

measuring period in the obstructed group was significantly higher than in the sham-operated 

group (11.0 ± 1.81, n=15 and 2.89 ± 0.42, n=19, P<0.0001 two way ANOVA, Tukey post 

test) (Fig. 1A). In contrast, voiding frequency of the sham-operated group was slightly 

increased only at the 1
st
 week post surgery and then returned to control levels in subsequent 

weeks (Fig. 1A).  The voiding volume was inversely proportional to the voiding frequency, 

decreasing significantly in the obstructed guinea pigs each week following obstruction. 

Conversely, in the sham group, a decrease was only seen in the 1
st
 week after operation and 

by the 2
nd

 week voiding volume recovered to the levels recorded before the sham operation 

(Fig. 1B). When compared to the sham group, voiding volume of the obstructed guinea pigs 

was significantly smaller at 2, 3 and 4 weeks following obstruction. For example, at week 4, 

the mean volume per void in the obstructed group was significantly smaller than shams (1.16 

± 0.23, n=15 and 5.08 ± 0.39, n=19, respectively, P<0.0001 two way ANOVA, Tukey post 

test) (Fig. 1B). It is worth mentioning that total voiding volume during the 6 hours period was 

not significantly different between sham and obstructed group in any week after surgery (eg: 

13.1 ± 1.66, n=19 and 10.0 ± 1.37, n=15, NS, two way ANOVA, Tukey post test at week 4, 

comparing sham and obstructed groups).   
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3.2 Changes in bladder weight and histology in obstruction 

 

Bladders from the obstructed group (n=19) were significantly heavier (0.90 ± 0.06 g, n=19) 

than those from both the sham-operated group (0.44 ± 0.02, n=21, P<0.0001, one way 

ANOVA, Tukey post test) and untreated control group (0.29 ± 0.03, n=13, P<0.0001, one way 

ANOVA, Tukey post test) (Fig. 1D). Hematoxylin and eosin staining revealed significant 

muscle hypertrophy and hyperplasia of the adventitia in the obstructed group compared with 

shams and controls. Detrusor muscle thickness in the obstructed group (0.70 ± 0.05 mm, 

n=18) was significantly greater than that of shams (0.47 ± 0.03 mm, n=20, P<0.0001, one way 

ANOVA, Tukey post test) or controls (0.40 ± 0.02 mm, n=18, P<0.0001, one way ANOVA, 

Tukey post test). Similarly, the thickness of adventitia in the obstructed group (0.61 ± 0.14 

mm, n=18) was significantly greater than that of shams (0.16 ± 0.02 mm, n=20, P<0.001, one 

way ANOVA, Tukey post test) or controls (0.14 ± 0.02 mm, n=18, P<0.0001, one way 

ANOVA, Tukey post test). There was no significant difference in the thickness of the mucosa 

between obstructed, sham and control groups (0.20 ± 0.02 mm, n=18, 0.15 ± 0.01 mm, n=20 

and 0.16 ± 0.02 mm, n=18, respectively). Overall, the bladder wall was thicker in the 

obstructed group (1.51 ± 0.17 mm, n=18) than in shams (0.79 ± 0.05 mm, n=20, P<0.0001, 

one way ANOVA, Tukey post test) or controls (0.66 ± 0.06 mm, n=18, P<0.0001, one way 

ANOVA, Tukey post test) (Fig. 1E). Histological damage score (which includes infiltration of 

leukocytes in the bladder wall, edema and tissue red blood cells) in the obstructed group (3.17 

± 0.37, n=18) was also significantly higher than in shams (0.8 ± 0.21, n=20, P<0.0001, one 

way ANOVA, Tukey post test) or control groups (0.41 ± 0.12 (n=18, P<0.0001, one way 

ANOVA, Tukey post test) (Fig. 1F).  

 

 

3.3 Spontaneous and distension-induced contractile activity in vitro 

 

The frequency of spontaneous contractions of the bladder did not differ significantly between 

the age-matched control and sham-operated groups (Fig. 2A,C). The frequency of 

spontaneous contractions was higher in obstructed preparations (3.72 ± 0.46 events per min, 

n=19) when compared to the sham-operated animals (2.16 ± 0.13, n=21, P<0.01) but not 

compared to controls (3.14 ± 0.21, NS, n=18) (Fig. 2C). The area under the curve (AUC) of 

spontaneous phasic contractions was greater in obstructed preparations (278 ± 62.6 cmH2O.s, 

n=19) than in the control group (111.3 ± 31.2 cmH2O.s, n=18, P<0.05, one way ANOVA, 

Tukey post test) but not sham-operated animals (224.1 ± 30.7, NS, n=21). Similarly, the 

amplitude of spontaneous contractions was greater in obstructed preparations (2.88 ± 0.61 

cmH2O, n=19) when compared to the control group (0.95 ± 0.34, n=18, P<0.01, one way 

ANOVA, Tukey post test) but not the sham-operated animals (1.93 ± 0.29, NS, n=21) (Fig. 

2B). The standardized amplitude (to the thickness of detrusor muscle layer) of spontaneous 

contractions was not different between the three groups (control: 2.94 ± 1.23 cmH2O/mm, 

n=18; sham: 4.34 ± 0.72 cmH2O/mm, n=21; obstructed: 4.17 ± 0.78 cmH2O cmH2O/mm, 

n=19). 
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Slow ramp distension of the bladder by 2.2 ml evoked an increase in active phasic 

contractions (Fig. 2A). Overall, no significant difference was seen in the AUC (standardized 

to the duration of bladder distention in minutes) of distension-induced phasic contractions 

between the obstructed and sham groups, but AUCs for both the obstructed (88.2 ±12.9 

cmH2O.s/min, n=17, P<0.001) and the sham (70.3 ± 7.35 cmH2O.s/min, n=21, P<0.01) 

groups were significantly greater than the control group (27.3 ± 7.91 cmH2O.s/min, n=14) 

(Fig. 2D). Bladder compliance was significantly lower in obstructed bladders (0.47 ± 0.15 

ml/cmH2O, n=17) compared to both the sham-operated group (1.28 ± 0.19 ml/cmH2O, n=21, 

P<0.05, one way ANOVA, Tukey post test) and the control group (2.21 ± 0.28 ml/cmH2O, 

n=14, P<0.0001, one way ANOVA, Tukey post test). Bladder compliance was also 

significantly lower in the sham-operated group (n=21) compared with control group (n=14, 

P<0.01, one way ANOVA, Tukey post test) (Fig. 2E).  

 

 

3.4 Electrical field stimulation of intramural nerves in vitro 

 

The response of the isolated control bladders, in vitro, to repetitive EFS (1-30Hz) plateaued at 

about 30 Hz (Fig. 3A). EFS-induced responses in the sham group at 30Hz (89.3 ± 3.28 

cmH2O, n=20) were not different from age-matched controls (79.5 ± 4.58 cmH2O, n=18) but 

were significantly higher than those seen in the obstructed group (68.5 ± 9.93 cmH2O, n=18, 

P<0.01, two way ANOVA, Tukey post test) (Fig. 3A-C).  In order to exclude the effects of 

hypertrophy (i.e. a greater muscle mass), we standardized the EFS-induced contractions to the 

thickness of the detrusor muscle layer. The standardized amplitude of responses of the 

bladders to EFS (30 Hz) in the obstructed group was significantly lower (116 ± 23.5 

cmH2O/mm, n=17) than both the sham (208 ± 18.1 cmH2O/mm, n=19, P<0.0001, two way 
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ANOVA, Tukey post test) and control groups (208 ± 19.1 cmH2O/mm, n=17, P< 0.0001, two 

way ANOVA, Tukey post test) (Fig.3D). 

 
The EFS-evoked responses in the guinea pig isolated bladders have both cholinergic and 

purinergic components. The obstructed, sham-operated and control bladder did not differ in 

the relative contribution of either the cholinergic component, assessed after application of 3 

µM hyoscine: 27 ± 4%, n=7, 28 ± 6%, n=5, and 27 ± 5%, n= 6, respectively (NS, one way 

ANOVA, Tukey post test) or the purinergic components, assessed after consecutive 

application of 30 µM PPADS: 17 ± 2%, n=7, 11 ± 3%, n=5, and 13 ± 3%, n= 6, respectively 

(NS, one way ANOVA, Tukey post test) (Fig. 3E). EFS-induced responses were abolished by 

tetrodotoxin (0.6 µM), leaving only very small contractions in response to high frequency 

stimulation (Fig. 3E).  

 

 

3.5 Multiple correlation analysis of in vitro parameters in control, sham and obstructed 

groups 

 

Multiple correlation analysis (partial correlations) was performed between the major in vitro 

parameters including frequency, amplitude and AUC of spontaneous and distension-induced 

phasic contractile activity, bladder compliance, amplitude of the EFS-induced responses at 

30Hz, bladder weight, total thickness and histological damage score in three experimental 

groups, treating all data as one correlation matrix (all nine parameters were measured in 13 

control, 19 sham and 14 obstructed bladders, total n=46).  There were numerous significant 

correlations between the parameters (Table I). Some were unsurprising such as a high 

correlation between the amplitude of spontaneous contractions and the AUC of spontaneous 
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contractions (r=0.96, P<0.0001), AUC of distension-induced activity (r=0.64, P<0.0001), total 

wall thickness (0.63, P<0.0001) and bladder weight (r=0.57, P<0.0001).  

 

Parameters Weight EFS Spontaneous Spontaneous Spontaneous Distension Compliance Thickness

frequency amplitude AUC AUC

EFS -0.37

(P<0.005)

Spontaneous 0.32 -0.53

frequency (P<0.05) (P<0.0001)

Spontaneous 0.57 0.02 0.1

amplitude (P<0.0001) (P=0.46) (P=0.24)

Spontaneous 0.5 -0.01 0.18 0.96

AUC (P<0.0001) (P=0.47) (P=0.11) (P<0.0001)

Distension 0.53 -0.19 -0.1 0.64 0.58

AUC (P<0.0001) (P=0.45) (P=0.25) (P<0.0001) (P<0.0001)

Compliance -0.53 0.04 -0.19 -0.58 -0.56 -0.71

(P<0.0001) (P=0.4) (P=0.11) (P<0.0001) (P<0.0001) (P<0.0001)

Thickness 0.73 -0.11 0.14 0.63 0.51 0.59 -0.4

(P<0.0001) (P=0.23) (P=0.17) (P<0.0001) (P<0.0001) (P<0.0001) (P<0.005)

Damage 0.68 -0.22 0.14 0.45 0.39 0.49 -0.47 0.69

score (P<0.0001) (P=0.07) (P=0.19) (P<0.001) (P<0.005) (P<0.0001) (P<0.0001) (P<0.0001)

In addition, the amplitude of spontaneous contractions was correlated with histological 

damage score (r=0.45, P<0.001) and was inversely correlated with the bladder compliance 

(r=-0.58, P<0.0001). Interestingly, the frequency of spontaneous contractions was correlated 

only with the bladder weight (r=0.32, P<0.05) and inversely correlated with the amplitude of 

EFS-induced responses (r=-0.53, P<0.0001) (Table I). The latter, in turn, was weakly 

inversely correlated with the bladder weight (r=-0.37, P<0.005). Bladder weight correlated 

significantly with both total thickness (r=0.73, P<0.0001) and histological damage score 

(r=0.68, P<0.0001). Significant positive correlations were also seen between bladder weight, 

total wall thickness and histological damage score with the parameters of contractile activity 

such as the amplitude and AUC of spontaneous and distension-induced phasic contractions 

and inversely with bladder compliance (Table I).  

 

Factor analysis, using principal components, showed a high covariance between structural and 

functional variables. Most variability could be explained by two components: component 1 

accounted for 51% and component 2 explained 18% of total variance. Component 1 contained 

covariance between structural parameters and functional parameters of contractile activity 

(r=0.7-0.8) except for the amplitude of EFS-induced responses and the frequency of 

spontaneous activity. The latter two parameters were highly inversely correlated in component 

2 with r=0.84 and r=-0.78, respectively. When similar multiple correlation analysis was 

performed separately for the three groups of animals, highly significant inverse covariance 

between the amplitude of EFS-induced responses and the frequency of spontaneous activity 

occurred only in the obstructed group (r=0.68 and r=-0.88, respectively, n=14). There was 
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weak or no significant covariance of contractile parameters with bladder weight, total 

thickness and histological damage score for the control (n=13) and sham-operated (n=19) 

groups when data were analysed separately for each group. More importantly, factor analysis 

for the obstructed group alone (n=14) showed similar high covariance between structural and 

functional parameters as to those found for all three groups combined. 

 

 
We also carried out a discriminant analysis (Norusis, 1993; Tabachnick and Fidell, 1996) on 

three experimental groups (n=46) in order to see well the nine parameters recorded in this 

study could predict the experimental group to which individual preparation belonged. The 

analysis converged on two canonical discriminant functions that explained all the variance 

seen in three groups. The first canonical discriminant function (F1) explained 80.5% of the 

variance and the second function (F2) explained the remaining 19.5% of the variance. The 

classification results showed that the in vitro parameters can be used to predict correctly the 

animal group from which the preparations came (control group membership: 11/13 correct; 

sham group 19/19 correct; obstructed: 13/14 correct).  

 

 

3.6 Effect of bethanechol and physostigmine in vitro 

 

As shown above (subsection 3.4), EFS-induced responses in the obstructed group were 

significantly smaller compared with those in the sham and control groups. In a separate series 

of experiments, we investigated whether this was due to damage to autonomic nerves or was 

the result of altered postsynaptic mechanisms. In order to establish whether there is 

postsynaptic effect including cholinergic super-sensitivity or a decrease in 

acetylcholinesterase activity during obstruction, effects of the muscarinic agonist bethanechol 
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and physostigmine were compared in control, sham and obstructed groups. Bethanechol (10
-7

 

- 10
-4 

M) evoked concentration-dependent contractions of whole bladders, increasing the 

amplitude of phasic contractions and elevating the baseline pressure, particularly at higher 

concentrations (≥10
-5 

M) in all three groups of guinea pigs (Fig. 4). Concentration-responses 

curves were similar in all three groups without standardization (Fig. 4C). When responses 

were standardized to the thickness of the detrusor muscle, there was a significant decrease in 

the contractile response to bethanechol of the obstructed bladders at 3x10
-5

 M - 10
-4 

M (n=6), 

compared to sham (n=6, P<0.05 at 10
-4

 M) and control bladders (n=6, P<0.01 at 10
-4

 M, two 

way ANOVA, Tukey post test) groups (Fig. 4D). However, when contractile activity was 

normalized to the maximal contractile response (maximal contractile response, calculated as 

AUC, was achieved at 10
-4 

M for the control group and was 2293 ± 348 cmH2O.s, n=6) no 

differences were detected. EC50 values for control [EC50=14.2 µM (95% confidence intervals 

= 11.0 – 18.5 µM, n=6)], for sham [EC50=10.4 µM (95% confidence intervals = 8.50 – 12.8 

µM, n=6)] and for obstructed group [EC50=13.3 µM (95% confidence intervals = 10.9 – 16.2 

µM, n=6)] were not significantly different  (one way ANOVA, Tukey post test) (Fig. 4E).  

 

Physostigmine (10
-7

 - 3x10
-5 

M) evoked concentration-dependent contractions of isolated 

bladders. In controls, physostigmine (10
-7

 - 3x10
-5 

M) increased only the amplitude of phasic 

contractions (Fig. 5A and insert a). Maximal contractile response for physostigmine, 

calculated as AUC, was achieved at 10
-4 

M for the control group and was 440 ± 68 cmH2O.s 

(n=6). In contrast, in all preparations of the obstructed group, physostigmine (≥3x10
-6

M), 

produced 2-3s bursts of contractile activity, consisting of an increase in baseline tension with 

superimposed phasic contractions (see Fig. 5B and insert b). In the sham-operated group, we 

observed a similar but less marked pattern: smaller bursts of contractions evoked by 

physostigmine (≥3x10
-6

M) were observed in 5 out 8 preparations. There was significant 

increase in the contractile response to physostigmine for both obstructed (n=7, P<0.001 at 10
-5

 

M, two way ANOVA, Tukey post test) and sham-operated bladders (n=8, P<0.001 at 10
-5

 M, 

two way ANOVA, Tukey post test) compared with control (n=6) at 3x10
-6

 M - 3x10
-5 

M (Fig. 

5C). When standardized to detrusor muscle thickness, there was significant increase in overall 

contractile effect of physostigmine in the sham-operated group (n=8) compared with the 

control for 3x10
-6 -

M - 3x10
-5 -

M (n=6, P<0.01 at 10
-5

 M, two way ANOVA, Tukey post test) 

(Fig. 5D) and the obstructed group for 3x10
-6 

M - 10
-5 

M (n=7, P<0.05 at 10
-5

 M, two way 

ANOVA, Tukey post test). More importantly, physostigmine was slightly more potent in the 

obstructed group (EC50=1.09 µM, 95% confidence intervals = 0.88 - 1.36 µM, n=7) compared 

with control (EC50=2.0 µM, 95% confidence intervals = 1.38 - 2.88 µM, n=6, P<0.05, one 

way ANOVA, Tukey post test), when contractile activity was normalized to the maximal 

contractile response. The response in the sham-operated group was not different compared to 

the control or obstructed groups (EC50=1.44 µM, 95% confidence intervals = 1.07 - 1.94 µM, 

n=8) (Fig. 5E). The effect of bethanechol and physostigmine on isolated bladders was not 

included in the multiple correlation analysis (see subsection 3.5) because sample size of these 

experiments was too small.  

 

 

3.7 Multiple correlation analysis between frequency/volume of conscious voiding and 

contractile activity of isolated bladders in the sham and obstructed groups 
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We performed multiple correlation analysis between conscious voiding frequency/volume of 

the sham-operated (n=19) and obstructed animals (n=14) and the nine structural and 

functional parameters of isolated bladders recorded in vitro measured in the same guinea pigs 

(total n=33). As described above (subsection 3.5), significant correlations were revealed 

between various in vitro parameters (Table I). We also found significant correlations between 

in vivo voiding characteristics and some of in vitro parameters. As might be expected, there 

was significant inverse correlation between voiding frequency and voiding volume (r=-0.57, 

P<0.0001). Interestingly, average voiding volume correlated more strongly with in vitro 

parameters than the frequency of voiding. The voiding volume was significantly inversely 

correlated with wall thickness (r=-0.46, P<0.003), but there was only a weak correlation 

between the voiding frequency and wall thickness (r=0.28, P<0.05). There was a strong 

inverse correlation of the bladder weight with the voiding volume (r=-0.62, P<0.0001) and 

positive correlation with voiding frequency (r=0.54, P<0.0001). Both the voiding volume and 

voiding frequency were significantly correlated (negatively and positively) with histological 

damage score (r=-0.52, P<0.001 and r=0.44, P<0.005, respectively). In addition, there was 

significant inverse correlation between the voiding volume and the frequency of spontaneous 

contractions (r=-0.39, P<0.01). The voiding volume (or frequency) correlated directly (or 

inversely) with bladder compliance (r=0.57, P<0.0001 or r=-0.33, P<0.05, respectively). 

There was also weak correlation between the voiding volume and the amplitude of the EFS-

induced responses (r=0.33, P<0.05). No other significant correlations were revealed with 

multiple correlation analysis of 11 (9 in vitro and 2 in vivo) parameters.  

 

When all 11 variables were examined with factor analysis, using principal components, highly 

significant covariance was identified between in vitro and in vivo variables. When a 
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discriminant analysis
 
was carried out (Norusis, 1993; Tabachnick and Fidell, 1996) on the 

sham-operated and obstructed groups (n=33), one canonical discriminant function (F1) could 

explain 100% of the variance. The classification results show that based on total 11 in vitro 

and in vivo parameters one can predict correctly 19/19 individual sham preparations and 13/14 

individual obstructed preparations. This discriminant analysis strongly supports the results of 

the multiple correlation analysis and validates high correlation seen between in vitro and in 

vivo parameters.  

 

 

4. Discussion 

 

The present data revealed that changes in conscious voiding during obstruction were 

significantly associated with alterations in structural parameters (such as bladder weight, 

thickness and histological damage score) and functional contractile parameters (such as 

frequency of spontaneous contractions, amplitude of EFS-induced contractions and bladder 

compliance) of their isolated bladders. This strongly suggests that changes in contractile 

activity of the bladder itself contribute significantly to obstruction-induced bladder 

overactivity. 

 

 

4.1 Bladder contractions in vitro and non-voiding contractions (NVCs) in vivo 

 

Obstruction-induced increase in spontaneous bladder contractions in vitro as well as in NVCs 

and voiding frequency in vivo has been demonstrated in many species (Sibley, 1987; Mostwin 

et al., 1991; Igawa et al., 1994; Drake et al., 2003; Kubota et al., 2008; Baker et al., 2010). 

NVCs recorded in vivo during urine storage phase in animal models are widely used as a 

surrogate marker for DO in humans. In contrast to micturition contractions, NVCs are most 

likely of myogenic origin since tetrodotoxin failed to block them in rats and guinea pigs alike 

(Maggi et al., 1987; Igawa et al, 1994). Both the amplitude and frequency of NVCs recorded 

in vivo and spontaneous contractions recorded in vitro are increased with bladder filling in 

control guinea pigs (Drake et al., 2003; Zagorodnyuk et al., 2009; Biallosterski et al., 2011). 

In the present study, the amplitude of spontaneous contractions and AUC of distension-

induced contractions of obstructed guinea pigs bladders in vitro were only slightly increased 

compared to shams. However, the frequency of spontaneous contractions was significantly 

greater. NVCs during urine storage phase in humans (i.e. DO) are more prevalent in bladder 

outlet obstruction patients compared with healthy volunteers, and their prevalence rise 

continuously with increasing grade of obstruction (Robertson, 1999; Nordling, 2002; Oelke et 

al., 2008). Localized NVCs were also more prevalent and sustained, and have a higher 

frequency in patients with urinary urgency compared to asymptomatic controls (Drake et al., 

2005). Present data indicate that voiding volume in conscious obstructed guinea pigs was 

inversely correlated with frequency of spontaneous contractions of their isolated bladders. 

Thus our data suggest importance of the frequency, in addition to the amplitude, of NVCs in 

obstruction-induced bladder overactivity. Interestingly, in rats, the frequency of phasic 

contractions induced by distension of isolated obstructed bladders was lower compared to 

shams (Drake et al., 2003). This difference between rats and guinea pigs could be due to 

species, sex differences or to the amount of damage to the bladder neck area during surgery, 
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which would affect the degree of obstruction. Bladder outlet obstruction caused patchy 

denervation in the guinea pig bladder but not in rats (Gabella and Uvelius, 1990; de Jongh et 

al., 2009). In present study, cholinergic EFS-induced contractions were reduced in four weeks 

obstructed guinea pigs but were up-regulated in rats (Banks et al., 2005). This study revealed 

a strong inverse correlation between the frequency of spontaneous contractions and degree of 

damage to the autonomic nerves in the obstructed bladder. Taken together the data suggest 

that difference in changes of the frequency of bladder contractions in obstruction between 

these two species could be related to higher degree of obstruction-induced damage to 

autonomic nerves in the guinea pig bladder compared to rat. 

 

It has been previously shown
 
that sham operation itself changed contractile activity of isolated 

guinea pig bladders (de Jongh et al, 2007). Our results confirm this finding. In fact, both 

obstructed and sham-operated groups showed enhanced amplitude of spontaneous 

contractions, AUC of distension-induced contractions and decreased compliance compared to 

control untreated bladders. This indicates the importance of the bladder neck-proximal urethra 

region for normal bladder function: even slight damage to this region during sham surgical 

procedures significantly changes subsequent contractile behaviour of the isolated bladder.  

 

 

4.2 EFS and effect of cholinergic agonists in obstruction 

 

Electrical stimulation of the parasympathetic innervation of the bladder has both cholinergic 

and purinergic components; their relative contributions vary significantly between species. In 

healthy human bladder, the purinergic component is minor but is increased in obstruction 

(Bayliss et al., 1999), similar to the rabbit (Calvert et al., 2001). In the present study of guinea 

pigs, the relative contributions of the cholinergic and purinergic components did not change 

between control, sham and obstructed bladders. In contrast, in the obstructed rat bladder, the 

cholinergic component was up-regulated, while the purinergic component was unaffected 

(Banks et al., 2005). 

 

Overall EFS-induced responses of the obstructed bladders were significantly smaller than 

those of the sham-operated animals, especially when standardized to the bladder wall 

thickness. This observation confirms previous findings that in animal models and in patients 

suffering from bladder outflow obstruction, there is damage to the autonomic innervation 

(Sibley, 1987; Williams et al., 1993; Brading, 1997; Levin et al., 2000; de Jongh et al., 2009). 

Oxidative stress due to ischemia followed by reperfusion, has been demonstrated in 

obstructed bladders and may underlie the changes in muscle function and patchy denervation 

of the detrusor (Conners et al., 2006; de Jongh et al., 2009; Scheepe et al., 2011). There was 

no inhibition of bethanechol-induced responses (up to 10
-5 -

M) in obstructed guinea pig 

bladders compared to shams or controls. This indicates that a reduction in the amplitude of the 

EFS-induced responses in obstruction is rather due to presynaptic mechanisms, most likely 

reflecting damage to autonomic nerves within the detrusor. 

 

In some studies in obstructed bladders from pigs and humans, super-sensitivity to cholinergic 

agonists has been described and loss of acetylcholinesterase activity has been postulated, 

since acetylcholine showed a higher increase in potency than the esterase-resistant agonist, 
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carbachol (Harrison et al., 1987; Sibley, 1987; Brading, 1997). In the present study supporting 

previous data from obstructed guinea pigs
 
(Williams et al., 1993; de Jongh et al., 2009) and 

human patients (Bayliss et al., 1999), no super-sensitivity to stable cholinergic agonist was 

seen. Our data suggest a decrease in acetylcholinesterase activity in obstructed bladders 

compared with controls, revealed by the leftward shift and the higher peak value of the 

concentration-response curve for physostigmine, but not for the non-hydrolyzable muscarinic 

agonist, bethanechol. Interestingly, in control bladders, physostigmine increased only the 

amplitude of phasic contractions as previously reported (Zagorodnyuk et al., 2009). In sham, 

and especially, in obstructed bladders, physostigmine evoked repetitive and massive bursts of 

contractions which contribute to increased responses compared to controls. It has been 

previously shown that densities of interstitial cells (ICs) were increased in obstructed animals 

(Kubota et al., 2008; Grol et al., 2011; Kim et al., 2011). The difference in the pattern of the 

responses to physostigmine in the obstructed group may be due to the changes in the number 

of ICs and/or remodeling of IC networks.  

 

 

4.3 Correlations between in vivo conscious voiding and in vitro parameters of contractile 

activity in obstruction 

 

The present study revealed significant positive correlations between structural (bladder 

weight, wall thickness and histological damage score) and functional in vitro parameters of 

contractile activity (the frequency, amplitude and AUC of spontaneous and distension-evoked 

contractions) and negative correlations with amplitude of EFS-induced contractions and 

bladder compliance in obstructed animals. In particular, the data clearly demonstrated a 

significant correlation between the degree of bladder obstruction and damage to the 

autonomic innervation: the greater the bladder weight, wall thickness and histological damage 

score the smaller the amplitude of the EFS-induced responses. Damage to the autonomic 

innervation, in turn, correlated significantly with the frequency of spontaneous contractions in 

vitro. Changes in the frequency of contractions in obstructed bladders could be due to 

increased activity and/or density of ICs that was previously found in obstructed bladders 

(Kubota et al., 2008; Grol et al., 2011; Kim et al., 2011). In addition, obstructed bladders were 

less compliant that shams in vitro. This could be the result of increased frequency of 

spontaneous contractions, which summate to make the bladder wall actively stiffer. It has 

been previously shown a significant increase in connective tissue in obstructed bladders 

(Levin et al., 2000; Metcalfe et al, 2010), this will make them passively much stiffer than 

shams.  

 

Present multiple correlation and discriminant analyses revealed that frequency of conscious 

voiding (and voiding volume) positively (and negatively for volume) correlated with major 

structural changes of the bladder such as bladder weight, wall thickness and histological 

damage score.  In addition, the voiding volume of conscious animals inversely correlated with 

frequency of spontaneous contractions and positively associated with amplitude of the EFS-

induced responses and bladder compliance. Overall, the data suggest that changes in the 

contractile activity of the bladder itself contribute to bladder overactivity observed during 

obstruction.   
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4.4 Other factors influenced obstruction-induced bladder overactivity 

 

In addition to DO (i.e. involuntary detrusor contractions), an inefficient bladder emptying, 

which leads to increased residual volume, will result in increase in voiding frequency and 

reduction in voiding volume. It is well established that residual volume is significantly 

increased in bladder outflow obstruction in human patients and animal models (Rosier et al., 

1995; O’Connor et al., 1997; Robertson, 1999; Pandita et al., 2000). The mechanism 

responsible for increased residual volume and bladder capacity in obstruction is still unclear. 

Oxidative damage to the autonomic innervation and to the detrusor muscle, demonstrated in 

animal models of bladder obstruction (Conners et al., 2006; de Jongh et al., 2009; Scheepe et 

al., 2011) could be involved. It has been recently shown that distension-sensitive bladder 

afferents had higher threshold volumes and lower tension sensitivity in obstructed rats (Zeng 

et al., 2012). This would lead to a weaker afferent drive of the micturition reflex, resulting in 

increased residual volume in obstruction. We did not measure residual volume in this study 

since we used a non-invasive method of determining the frequency and voiding volume in 

conscious male guinea pigs. However, the present data support inefficiency in bladder 

emptying in obstructed guinea pigs: conscious voiding volume was significantly correlated 

with the amplitude of the EFS-induced responses (i.e. smaller voiding volume was associated 

with greater damage to autonomic nerves). Thus, it is likely that obstructed guinea pigs had 

increased residual volume, which would contribute to reduced voiding volume and increased 

voiding frequency. 

 

Our study revealed a greater inflammatory response in the obstructed bladders than in the 

shams and a significant correlation between both the voiding frequency and the voiding 

volume (positive and negative, respectively) with histological damage score. Enhanced 

release of pro-inflammatory mediators in the bladder wall in obstruction may activate and/or 

sensitize the nerve endings of some classes of bladder afferents leading to excessive urge and 

more frequent voiding, without necessarily causing large changes in bladder motor 

characteristics. Future studies are needed to test directly whether there are changes in 

excitability of sensory nerves in the obstructed bladder.  

 

 

5. Conclusion  

 

The data revealed significant association between conscious voiding of guinea pigs and 

structural and contractile activity changes of their isolated bladders in obstruction. 

Notwithstanding multifactorial causes of DO and OAB, the data suggest that change in 

contractile activity of the bladder itself is a major contributor to obstruction-induced bladder 

overactivity. 
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Figure legends  

 

Fig. 1. Conscious voiding characteristics of the sham-operated and obstructed guinea pigs and 

changes in their isolated bladders weight, wall thickness and histology. A: average number of 

voids recorded over 6 hr in metabolic cages 1-4 weeks after sham operation (n=19) or partial 

bladder outlet obstruction (n=15). B: averaged volume per void recorded during 6 hr in 

metabolic cages after sham operation (n=19) or partial bladder obstruction (n=15). C: 

examples of hematoxylin and eosin staining from the three groups of animals studied. D: 

bladder weight in the control (n=13), sham-operated (n=21) and obstructed groups (n=19). E: 

significant increase in thickness of the bladder wall was seen in the obstructed bladders 

(n=18) compared to controls (n=18) and shams (n=20). F: histological damage score blindly 

determined for control (n=18), sham (n=20) and obstructed bladders (n=18). 
#
 P<0.05; * 

P<0.0001. 

 

Fig. 2. Spontaneous and distension-induced bladder contractions in the control, sham-operated 

and obstructed groups. A: typical tracings of spontaneous contractions and contractions 

induced by the slow ramp distension to 2.2 ml at 0.5 ml/min in the control, sham and 

obstructed bladders. B: amplitude of spontaneous contractions in the control (n=18), sham-

operated (n=21) and obstructed group (n=19). C: frequency of spontaneous contractions in the 

control (n=18), sham-operated (n=21) and obstructed group (n=19). D: area under the curve 

(standardized to the duration of distension in minutes) of the phasic distension-induced 

contractions for the control (n=14), sham-operated (n=21) and obstructed (n=17) groups. E: 

bladder compliance in the control (n=14), sham-operated (n=21) and obstructed (n=17) 

groups. 
#
 P<0.05; * P<0.01; @ P<0.001; 

&
 P<0.0001. 

 

Fig. 3. EFS-induced contractions of the isolated bladders in the control, sham-operated and 

obstructed groups. A: typical tracings showing large amplitude responses to EFS (1-30 Hz for 

3 s, 0.15 ms, 100V) observed in the control bladder. B: smaller responses to EFS (1-30 Hz) 

were seen in obstructed guinea pigs. C: averaged data of the EFS (1-30 Hz)-induced 

contractions in the control (n=18), sham-operated (n=20) and obstructed group (n=18). EFS-

induced contractions differed significantly between the sham-operated and obstructed groups. 

D: EFS (1-30 Hz)-induced contractions in the control (n=17) and sham-operated (n=19) 

groups were significantly different from obstructed group (n=17), when amplitudes were 

standardized to the thickness of the detrusor muscle layer. E: averaged data of the effects of 

hyoscine, PPADS and tetrodotoxin (TTX) on the amplitude of EFS-induced contractions of 

the obstructed bladders, standardized to the thickness of the detrusor muscle layer (n=7). * 

P<0.01; @ P<0.001; 
#
 P<0.0001. 

 

Fig. 4. Concentration-response curves of bethanechol in isolated bladders from the control, 

sham-operated and obstructed groups. A: typical tracings showing the effects of increasing 

concentrations of bethanechol in the sham-operated guinea pig. B: typical tracings showing 

the effect of increasing concentrations of bethanechol in the obstructed bladder. C: 

concentration-response curves of bethanechol in control (n=6), sham (n=6) and obstructed 

(n=6) bladders. D: concentration-response curves of bethanechol in control (n=6), sham (n=6) 

and obstructed (n=6) bladders, standardized to the thickness of the detrusor muscle layer. E: 
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concentration-response curves of bethanechol in the control (n=6), sham (n=6) and obstructed 

(n=6) bladders, standardized to the maximal contractile response. 
#
 P<0.05; * P<0.01; @ 

P<0.001. 

 

Fig. 5. Concentration-response curves of physostigmine in isolated bladders from the control, 

sham-operated and obstructed guinea pigs. A: typical tracings showing the effect of increasing 

concentrations of physostigmine in control bladder. B: typical tracings showing the effect of 

increasing concentrations of physostigmine in obstructed bladder. Calibration bar for the 

intravesical pressure traces in A - 5 cmH2O, and in B - 10 cmH2O. Inserts a and b show 

physostigmine (3x10
-5 

M)-induced contractile activity at the expanded time scale for the 

control and obstructed bladders, respectively. C: concentration-response curves of 

physostigmine in the control (n=6), sham (n=8) and obstructed (n=7) bladders. D: 

concentration-response curves for physostigmine in the control (n=6), sham (n=8) and 

obstructed (n=7) bladders, standardized to the thickness of the detrusor muscle layer. E: 

concentration-response curves for physostigmine in the control (n=6), sham (n=8) and 

obstructed (n=7) bladders, standardized to the maximal contractile response. @ P<0.05; 
#
 

P<0.01; * P<0.001. 

 

 

Table I. Partial correlations between nine in vitro parameters in control, sham and obstructed 

groups. 

Pearson correlation coefficients and significance levels (in brackets) are indicated. 




