1,373 research outputs found

    Brain connectivity analysis: a short survey

    Get PDF
    This short survey the reviews recent literature on brain connectivity studies. It encompasses all forms of static and dynamic connectivity whether anatomical, functional, or effective. The last decade has seen an ever increasing number of studies devoted to deduce functional or effective connectivity, mostly from functional neuroimaging experiments. Resting state conditions have become a dominant experimental paradigm, and a number of resting state networks, among them the prominent default mode network, have been identified. Graphical models represent a convenient vehicle to formalize experimental findings and to closely and quantitatively characterize the various networks identified. Underlying these abstract concepts are anatomical networks, the so-called connectome, which can be investigated by functional imaging techniques as well. Future studies have to bridge the gap between anatomical neuronal connections and related functional or effective connectivities

    On contractions of classical basic superalgebras

    Full text link
    We define a class of orthosymplectic osp(m;j2n;ω)osp(m;j|2n;\omega) and unitary sl(m;jn;ϵ)sl(m;j|n;\epsilon) superalgebras which may be obtained from osp(m2n)osp(m|2n) and sl(mn)sl(m|n) by contractions and analytic continuations in a similar way as the special linear, orthogonal and the symplectic Cayley-Klein algebras are obtained from the corresponding classical ones. Casimir operators of Cayley-Klein superalgebras are obtained from the corresponding operators of the basic superalgebras. Contractions of sl(21)sl(2|1) and osp(32)osp(3|2) are regarded as an examples.Comment: 15 pages, Late

    On two-dimensional Bessel functions

    Get PDF
    The general properties of two-dimensional generalized Bessel functions are discussed. Various asymptotic approximations are derived and applied to analyze the basic structure of the two-dimensional Bessel functions as well as their nodal lines.Comment: 25 pages, 17 figure

    Projective Hilbert space structures at exceptional points

    Full text link
    A non-Hermitian complex symmetric 2x2 matrix toy model is used to study projective Hilbert space structures in the vicinity of exceptional points (EPs). The bi-orthogonal eigenvectors of a diagonalizable matrix are Puiseux-expanded in terms of the root vectors at the EP. It is shown that the apparent contradiction between the two incompatible normalization conditions with finite and singular behavior in the EP-limit can be resolved by projectively extending the original Hilbert space. The complementary normalization conditions correspond then to two different affine charts of this enlarged projective Hilbert space. Geometric phase and phase jump behavior are analyzed and the usefulness of the phase rigidity as measure for the distance to EP configurations is demonstrated. Finally, EP-related aspects of PT-symmetrically extended Quantum Mechanics are discussed and a conjecture concerning the quantum brachistochrone problem is formulated.Comment: 20 pages; discussion extended, refs added; bug correcte

    Regulating Clothing Outwork: A Sceptic's View

    Get PDF
    By applying the strategies of international anti-sweatshop campaigns to the Australian context, recent regulations governing home-based clothing production hold retailers responsible for policing the wages and employment conditions of clothing outworkers who manufacture clothing on their behalf. This paper argues that the new approach oversimplifies the regulatory challenge by assuming (1) that Australian clothing production is organised in a hierarchical ‘buyer-led’ linear structure in which core retail firms have the capacity to control their suppliers’ behaviour; (2) that firms act as unitary moral agents; and (3) that interventions imported from other times and places are applicable to the contemporary Australian context. After considering some alternative regulatory approaches, the paper concludes that the new regulatory strategy effectively privatises responsibility for labour market conditions – a development that cries out for further debate

    Complex magnetic monopoles, geometric phases and quantum evolution in vicinity of diabolic and exceptional points

    Full text link
    We consider the geometric phase and quantum tunneling in vicinity of diabolic and exceptional points. We show that the geometric phase associated with the degeneracy points is defined by the flux of complex magnetic monopole. In weak-coupling limit the leading contribution to the real part of geometric phase is given by the flux of the Dirac monopole plus quadrupole term, and the expansion for its imaginary part starts with the dipolelike field. For a two-level system governed by the generic non-Hermitian Hamiltonian, we derive a formula to compute the non-adiabatic complex geometric phase by integral over the complex Bloch sphere. We apply our results to to study a two-level dissipative system driven by periodic electromagnetic field and show that in the vicinity of the exceptional point the complex geometric phase behaves as step-like function. Studying tunneling process near and at exceptional point, we find two different regimes: coherent and incoherent. The coherent regime is characterized by the Rabi oscillations and one-sheeted hyperbolic monopole emerges in this region of the parameters. In turn with the incoherent regime the two-sheeted hyperbolic monopole is associated. The exceptional point is the critical point of the system where the topological transition occurs and both of the regimes yield the quadratic dependence on time. We show that the dissipation brings into existence of pulses in the complex geometric phase and the pulses are disappeared when dissipation dies out. Such a strong coupling effect of the environment is beyond of the conventional adiabatic treatment of the Berry phase.Comment: 29 pages, 21 figure

    BICEP2 / Keck Array V: Measurements of B-mode Polarization at Degree Angular Scales and 150 GHz by the Keck Array

    Full text link
    The Keck Array is a system of cosmic microwave background (CMB) polarimeters, each similar to the BICEP2 experiment. In this paper we report results from the 2012 and 2013 observing seasons, during which the Keck Array consisted of five receivers all operating in the same (150 GHz) frequency band and observing field as BICEP2. We again find an excess of B-mode power over the lensed-Λ\LambdaCDM expectation of >5σ> 5 \sigma in the range 30<<15030 < \ell < 150 and confirm that this is not due to systematics using jackknife tests and simulations based on detailed calibration measurements. In map difference and spectral difference tests these new data are shown to be consistent with BICEP2. Finally, we combine the maps from the two experiments to produce final Q and U maps which have a depth of 57 nK deg (3.4 μ\muK arcmin) over an effective area of 400 deg2^2 for an equivalent survey weight of 250,000 μ\muK2^{-2}. The final BB band powers have noise uncertainty a factor of 2.3 times better than the previous results, and a significance of detection of excess power of >6σ> 6\sigma.Comment: 13 pages, 9 figure

    Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome

    Get PDF
    Analysis of several Saccharomyces cerevisiae ump mutants with defects in ubiquitin (Ub)-mediated proteolysis yielded insights into the regulation of the polyubiquitin gene UB14 and of proteasome genes. High-molecular weight Ub-protein conjugates accumulated in ump mutants with impaired proteasome function with a concomitant decrease in the amount of free Ub. In these mutants, transcriptional induction of UB14 was depending in part on the transcription factor Rpn4. Deletion of UB14 partially suppressed the growth defects of ump1 mutants, indicating that accumulation of polyubiquitylated proteins is deleterious to cell growth. Transcription of proteasome subunit genes was induced in ump mutants affecting the proteasome, as well as under conditions that mediate DNA damage or the formation of abnormal proteins. This induction required the transcriptional activator Rpn4. Elevated Rpn4 levels in proteasome-deficient mutants or as a response to abnormal proteins were due to increased metabolic stability. Up-regulation of proteasome genes in response to DNA damage, in contrast, is shown to operate via induction of RPN4 transcription. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.info:eu-repo/semantics/publishedVersio

    BICEP2 / Keck Array VIII: Measurement of gravitational lensing from large-scale B-mode polarization

    Get PDF
    We present measurements of polarization lensing using the 150 GHz maps which include all data taken by the BICEP2 & Keck Array CMB polarization experiments up to and including the 2014 observing season (BK14). Despite their modest angular resolution (0.5\sim 0.5^\circ), the excellent sensitivity (3μ\sim 3\muK-arcmin) of these maps makes it possible to directly reconstruct the lensing potential using only information at larger angular scales (700\ell\leq 700). From the auto-spectrum of the reconstructed potential we measure an amplitude of the spectrum to be ALϕϕ=1.15±0.36A^{\phi\phi}_{\rm L}=1.15\pm 0.36 (Planck Λ\LambdaCDM prediction corresponds to ALϕϕ=1A^{\phi\phi}_{\rm L}=1), and reject the no-lensing hypothesis at 5.8σ\sigma, which is the highest significance achieved to date using an EB lensing estimator. Taking the cross-spectrum of the reconstructed potential with the Planck 2015 lensing map yields ALϕϕ=1.13±0.20A^{\phi\phi}_{\rm L}=1.13\pm 0.20. These direct measurements of ALϕϕA^{\phi\phi}_{\rm L} are consistent with the Λ\LambdaCDM cosmology, and with that derived from the previously reported BK14 B-mode auto-spectrum (ALBB=1.20±0.17A^{\rm BB}_{\rm L}=1.20\pm 0.17). We perform a series of null tests and consistency checks to show that these results are robust against systematics and are insensitive to analysis choices. These results unambiguously demonstrate that the B-modes previously reported by BICEP / Keck at intermediate angular scales (150350150\lesssim\ell\lesssim 350) are dominated by gravitational lensing. The good agreement between the lensing amplitudes obtained from the lensing reconstruction and B-mode spectrum starts to place constraints on any alternative cosmological sources of B-modes at these angular scales.Comment: 12 pages, 8 figure
    corecore