54 research outputs found

    An application of fuzzy-AHP to ship operational energy efficiency measures

    Get PDF
    Lowering fuel consumption of ships has gained a great deal of attention in maritime industry with regards to both environmental and economic concerns. The potential for fuel economy in shipping ranging between 25% to 75% is possible by using existing technology and practices and technical improvements in the design of new ship. Despite the existence of many technology and design-based approaches, limitations of emerging these measures has led to discussions about the potential energy savings through operational changes. In this study, operational measures were examined within the scope of Ship Energy Efficiency Management Plan (SEEMP) adopted by International Maritime Organization (IMO). We applied the Analytic Hierarchy Process (Fuzzy-AHP) approach, one of multi-criteria decision making (MCDM) techniques, to prioritize the weight of each measure. Fuzzy AHP effectively reflects the vagueness of human thinking with interval values, and shows the relative importance of operational measures - which can be the fundamental decision making data for decision makers (ships' masters, operating companies and ship owners) - by providing a strategic approach to identify energy efficient solutions

    Mixing and recirculation characteristics of gas-liquid Taylor flow in microreactors

    Get PDF
    The effects of operating parameters (capillary and Reynolds numbers) and microchannel aspect ratio (α = w/h = [1; 2.5; 4]) on the recirculation characteristics of the liquid slug in gas-liquid Taylor flow in microchannels have been investigated using 3-dimensional VOF simulations. The results show a decrease in the recirculation volume in the slug and an increase in recirculation time with increasing capillary number, which is in good agreement with previous results obtained in circular and square geometries (Thulasidas et al., 1997). In addition, increasing the aspect ratio of the channel leads to a slight decrease in recirculating volumes but also a significant increase in recirculation times

    An integrated approach of multiple correspondences analysis (MCA) and fuzzy AHP method for occupational health and safety performance evaluation in the land cargo transportation

    Get PDF
    Land cargo transportation is one of the components of the logistics chain with high impact on economic and social development worldwide. However, problems such as top logistics costs, deficiencies in transportation infrastructure and the failure to adopt good operating practices in aspects such as quality, environment, and occupational safety and health affect the ability of companies to comply with the agreements, requirements, and regulations of the clients and other interested parties. One of the most relevant problems for the sector is associated with the high accident rates that make this medium less advantageous compared to other means of transport with impact on operational costs, on logistics indicators, on compliance with legal regulations and customer satisfaction. However, although there are legal standards and management standards in occupational safety and health, evaluating performance can become a difficult and subjective process, due to the complexity of the land cargo transportation and the different interest groups involved. Besides, there is little information in the literature that provides solutions for the industry. Therefore, this document presents an integrated approach between multi-criterion decision making models (MCDM) and the Multiple Correspondences Analysis (MCA) to facilitate the evaluation and improvement of occupational health and safety performance, with a logical process, objective, robust and using both qualitative and quantitative techniques, with real application in the land cargo transportation sector. First, the multivariate method of Multiple Correspondences Analysis (MCA) was used for the evaluation of a sample of companies in the industry, considering the factors and sub-factors identified in the first stage and performing correlational analyzes among the variables. Subsequently, a multicriteria decision-making model was designed to determine the factors and sub-factors that affect occupational health and safety performance through the technique of the Fuzzy Analytic Hierarchy Process (FAHP). Finally, improvement strategies are proposed based on the approaches suggested in this document

    SEAHORSE project : Dealing with maritime workarounds and developing smarter procedures

    Get PDF
    EU funded SEAHORSE project is developing a novel approach to improve maritime SOPs. SEAHORSE Project’s ‘Smart Procedures Concept’ aims to develop a system to capture the behavioural adaptations that crew have developed in order to cope with operational demands and challenges. Initially, a detailed survey was conducted worldwide to capture seafarer’s safety attitudes as well as the common workarounds. Then, these collected workarounds will be categorised through conducting risk and benefit analysis. Accordingly, safe workarounds will be approved as Standard Operating Procedures (SOPs), on the other hand, measures will be proposed to prevent reoccurrence of unsafe workarounds. This paper will present the proposed approach to deal with maritime workarounds and report the preliminary results of the analysis

    Dynamic Control of Nanoprecipitation in a Nanopipette

    Get PDF
    Studying the earliest stages of precipitation at the nanoscale is technically challenging but quite valuable as such phenomena reflect important processes such as crystallization and biomineralization. Using a quartz nanopipette as a nanoreactor, we induced precipitation of an insoluble salt to generate oscillating current blockades. The reversible process can be used to measure both kinetics of precipitation and relative size of the resulting nanoparticles. Counter ions for the highly water-insoluble salt zinc phosphate were separated by the pore of a nanopipette and a potential applied to cause ion migration to the interface. By analyzing the kinetics of pore blockage, two distinct mechanisms were identified: a slower process due to precipitation from solution, and a faster process attributed to voltage-driven migration of a trapped precipitate. We discuss the potential of these techniques in studying precipitation dynamics, trapping particles within a nanoreactor, and electrical sensors based on nanoprecipitation

    Reference isotherms for water vapor sorption on nanoporous carbon: results of an interlaboratory study

    Get PDF
    This paper reports the results of an international interlaboratory study sponsored by the Versailles Project on Advanced Materials and Standards (VAMAS) and led by the National Institute of Standards and Technology (NIST) on the measurement of water vapor sorption isotherms at 25 °C on a pelletized nanoporous carbon (BAM-P109, a certified reference material). Thirteen laboratories participated in the study and contributed nine pure water vapor isotherms and four relative humidity isotherms, using nitrogen as the carrier gas. From these data, reference isotherms, along with the 95% uncertainty interval (Uk=2), were determined and are reported in a tabular format

    In vitro assessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicoses

    Get PDF
    The high prevalence of the Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZON) in animal feeds in mild climatic zones of Europe and North America results in considerable economic losses, as these toxins affect health and productivity particularly of pigs from all age groups. The use of mycotoxin adsorbents as feed additives is one of the most prominent approaches to reduce the risk for mycotoxicoses in farm animals, and to minimise carry-over of mycotoxins from contaminated feeds into foods of animal origin. Successful aflatoxin adsorption by means of different substances (phyllosilicate minerals, zeolites, activated charcoal, synthetic resins or yeast cell-wall-derived products) has been demonstrated in vivo and in vitro. However, attempts to adsorb DON and ZON have been less encouraging. Here we describe the adsorption capacity of a variety of potential binders, including compounds that have not been evaluated before, such as humic acids. All compounds were tested at realistic inclusion levels for their capacity to bind ZON and DON, using an in vitro method that resembles the different pH conditions in the gastro-intestinal tract of pigs. Mycotoxin adsorption was assessed by chemical methods and distinct bioassays, using specific markers of toxicity as endpoints of toxicity in cytological assays. Whereas none of the tested substances was able to bind DON in an appreciable percentage, some of the selected smectite clays, humic substances and yeast-wall derived products efficiently adsorbed ZON (>70%). Binding efficiency was indirectly confirmed by the reduction of toxicity in the in vitro bioassays. In conclusion, the presented test protocol allows the rapid screening of potential mycotoxin binders. Like other in vitro assays, the presented protocol combining chemical and biological assays cannot completely simulate the conditions of the gastro-intestinal tract, and hence in vivo experiments remain mandatory to assess the efficacy of mycotoxin binders under practical conditions

    Adult attention deficit hyperactivity disorder is associated with migraine headaches

    Get PDF
    Attention deficit hyperactivity disorder (ADHD) is now recognized as a common disorder both in child and adult psychiatry. Adult patients with a diagnosis of ADHD (n = 572) and community controls (n = 675) responded to auto-questionnaires rating past and present symptoms of ADHD, co-morbid conditions, including migraine, treatment history and work status. The prevalence of migraine was significantly higher in the patient group compared to the controls (28.3% vs. 19.2%, P < 0.001, OR = 1.67, CI 1.28–2.17). The difference from controls was particularly marked for men (22.5% vs. 10.7%, P < 0.001, OR = 2.43, CI 1.51–3.90) but was also significant for women (34.4% vs. 24.9%, P = 0.008, OR = 1.58, CI 1.13–2.21). In both patients and controls, migraine was associated with symptoms of mood and anxiety disorders. These findings point to a co-morbidity of migraine with ADHD, and it is possible that these patients represent a clinical and biological subgroup of adult patients with ADHD

    Reducing the fuel consumption and emissions with the use of an external fuel cell hybrid power unit for electric taxiing at airports

    No full text
    Airport ground operations have a great impact on the environment. Various innovative solutions have been proposed for aircraft to perform taxi movements by deactivating their main engines. Although these solutions are environmentally beneficial, onboard and external electric taxiing solutions that are actively used and planned to be used in airports are not completely carbon-free. The disadvantages of the existing solutions can be alle-viated by using an external fuel cell hybrid power unit to meet the energy required for taxiing that does not put additional weight on the aircraft. To reveal the power and energy required by the system, Airbus A320-200, which is a narrow-body aircraft and frequently used in airports, has been considered in this study. To determine the physical re-quirements of the aircraft for taxiing, a total of 900 s taxi-out movement consisting of four different periods with different runway slope, headwind, and maximum speeds were examined. According to the determined physical requirements, the conceptual design of the proposed fuel cell battery system was created and the physical data of the system for each period were obtained using the Matlab Simulink environment. As a result of the simulation, it is seen that the system consumes approximately 1.96 g of hydrogen per second. In addition, it has been calculated that 578.34 kg of CO2 is emitted during the taxi -out movement. The results also show that as a result of using the proposed system, approximately 14.6 million tons of CO2 emission per year can be prevented.(c) 2022 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC

    Safety enhancement in maritime transportation : SEAHORSE Project

    No full text
    Human factors have been the main cause and a major contributing factor of numerous maritime accidents, such as the Exxon Valdez, Herald of Free Enterprise and the Costa Concordia. Despite the fact that safety standards and technological developments in maritime industry have been increased, accidents are still occurring since the limitations of the human being is underestimated. The aviation industry which is in many aspects similar to the maritime sector has been approaching the same problem systematically and developing advanced methodologies and techniques. The EU FP7 funded SEAHORSE (Safety Enhancements in transport by Achieving Human Orientated Resilient Shipping Environment) project aims to transfer the effective and successful safety concepts utilised in the aviation industry, adapting and tailoring them to the unique needs of maritime transport. The project has the potential to create a significant impact, at not only a European level but also an International one, in making the ship operation a safe, resilient, attractive and efficient environment. In this study, an overview of the SEAHORSE project is presented. Recent progress and future directions of the project is given in conclusion
    corecore