54 research outputs found

    All-optical control of spin in a 2D van der Waals magnet

    Get PDF
    Two-dimensional (2D) van der Waals magnets provide new opportunities for control of magnetism at the nanometre scale via mechanisms such as strain, voltage and the photovoltaic effect. Ultrafast laser pulses promise the fastest and most energy efficient means of manipulating electron spin and can be utilized for information storage. However, little is known about how laser pulses influence the spins in 2D magnets. Here we demonstrate laser-induced magnetic domain formation and all-optical switching in the recently discovered 2D van der Waals ferromagnet CrI(3). While the magnetism of bare CrI(3) layers can be manipulated with single laser pulses through thermal demagnetization processes, all-optical switching is achieved in nanostructures that combine ultrathin CrI(3) with a monolayer of WSe(2). The out-of-plane magnetization is switched with multiple femtosecond pulses of either circular or linear polarization, while single pulses result in less reproducible and partial switching. Our results imply that spin-dependent interfacial charge transfer between the WSe(2) and CrI(3) is the underpinning mechanism for the switching, paving the way towards ultrafast optical control of 2D van der Waals magnets for future photomagnetic recording and device technology

    Laser-induced topological spin switching in a 2D van der Waals magnet

    Get PDF
    Two-dimensional (2D) van der Waals (vdW) magnets represent one of the most promising horizons for energy-efficient spintronic applications because their broad range of electronic, magnetic and topological properties. Of particular interest is the control of the magnetic properties of 2D materials by femtosecond laser pulses which can provide a real path for low-power consumption device platforms in data storage industries. However, little is known about the interplay between light and spin properties in vdW layers. Here, combining large-scale spin dynamics simulations including biquadratic exchange interactions and wide-field Kerr microscopy (WFKM), we show that ultrafast laser excitation can not only generate different type of spin textures in CrGeTe3_3 vdW magnets but also induce a reversible transformation between them in a toggle-switch mechanism. Our calculations show that skyrmions, anti-skyrmions, skyrmioniums and stripe domains can be generated via high-intense laser pulses within the picosecond regime. The effect is tunable with the laser energy where different spin behaviours can be selected, such as fast demagnetisation process (\sim250 fs) important for information technologies. The phase transformation between the different topological spin textures is obtained as additional laser pulses are applied to the system where the polarisation and final state of the spins can be controlled by external magnetic fields. We experimentally confirmed the creation, manipulation and toggle switching phenomena in CrGeTe3_3 due to the unique aspect of laser-induced heating of electrons. Our results indicate laser-driven spin textures on 2D magnets as a pathway towards ultrafast reconfigurable architecture at the atomistic level

    Interplay between spin proximity effect and charge-dependent exciton dynamics in MoSe2/CrBr3 van der Waals heterostructures

    Get PDF
    Semiconducting ferromagnet-nonmagnet interfaces in van der Waals heterostructures present a unique opportunity to investigate magnetic proximity interactions dependent upon a multitude of phenomena including valley and layer pseudospins, moiré periodicity, or exceptionally strong Coulomb binding. Here, we report a charge-state dependency of the magnetic proximity effects between MoSe2 and CrBr3 in photoluminescence, whereby the valley polarization of the MoSe2 trion state conforms closely to the local CrBr3 magnetization, while the neutral exciton state remains insensitive to the ferromagnet. We attribute this to spin-dependent interlayer charge transfer occurring on timescales between the exciton and trion radiative lifetimes. Going further, we uncover by both the magneto-optical Kerr effect and photoluminescence a domain-like spatial topography of contrasting valley polarization, which we infer to be labyrinthine or otherwise highly intricate, with features smaller than 400 nm corresponding to our optical resolution. Our findings offer a unique insight into the interplay between short-lived valley excitons and spin-dependent interlayer tunneling, while also highlighting MoSe2 as a promising candidate to optically interface with exotic spin textures in van der Waals structures.T. P. L. acknowledges financial support from the EPSRC Doctoral Prize Fellowship scheme under Grant Reference EP/R513313/1. T. P. L., K. S. N. and A. I. T. acknowledge financial support from the European Graphene Flagship Projects under grant agreements 785219 and 881603, and EPSRC grants EP/P026850/1 and EP/S030751/1. K. S. N. also acknowledges support from EU Quantum Technology Flagship Programs, European Research Council Synergy Grant Hetero2D, the Royal Society, EPSRC grants EP/N010345/1, EP/S030719/1. We gratefully acknowledge the Exeter Time-Resolved Magnetism Facility (EXTREMAG - EPSRC Grant Reference EP/R008809/1) for the time allocated to this study for low temperature, wide-field Kerr microscopy. The DFT calculations were performed on the Tirant III cluster of the Servei d‘Informàtica of the University of Valencia (project vlc82) and on Mare Nostrum cluster of the Barcelona Supercomputing Center (project FI-2019-2-0034). A.M.-S. acknowledges the Marie-CurieCOFUND program Nano TRAIN For Growth II (Grant Agreement 713640). J.F.-R. acknowledges financial support from FCT for the grant UTAP-EXPL/NTec/0046/2017, as well as Generalitat Valenciana funding Prometeo 2017/139 and MINECO-Spain (Grant no. MAT2016-78625-C2). Growth of hexagonal boron nitride crystals was supported by the Elemental Strategy Initiative conducted by the MEXT, Japan, and the CREST (JPMJCR15F3), J.S.

    Temperature dependence of the interface moments in Co2MnSi thin films

    Get PDF
    Copyright © 2008 American Institute of PhysicsX-ray magnetic circular dichroism (XMCD) is utilized to explore the temperature dependence of the interface moments in Co2MnSi (CMS) thin films capped with aluminum. By increasing the thickness of the capping layer, we demonstrate enhanced interface sensitivity of the measurements. L2(1)-ordered CMS films show no significant temperature dependence of either the Co or Mn interface moments. However, disordered CMS films show a decreased moment at low temperature possibly caused by increased Mn-Mn antiferromagnetic coupling. It is suggested that for ordered L2(1) CMS films the temperature dependence of the tunneling magnetoresistance is not related to changes in the interface moments

    A Hybrid Magneto-Optic Capacitive Memory with Picosecond Writing Time

    Get PDF
    The long-term future of information storage requires the use of sustainable nanomaterials in architectures operating at high frequencies. Interfaces can play a key role in this pursuit via emergent functionalities that break out from conventional operation methods. Here, spin-filtering effects and photocurrents are combined at metal-molecular-oxide junctions in a hybrid magneto-capacitive memory. Light exposure of metal-fullerene-metal oxide devices results in spin-polarized charge trapping and the formation of a magnetic interface. Because the magnetism is generated by a photocurrent, the writing time is determined by exciton formation and splitting, electron hopping, and spin-dependent trapping. Transient absorption spectroscopy measurements show changes in the electronic states as a function of the magnetic history of the device within picoseconds of the optical pumping. The stored information is read using time-resolved scanning magneto optic Kerr effect measurements during microwave irradiation. The emergence of a magnetic interface in the picosecond timescale opens new paths of research to design hybrid magneto-optic structures operating at high frequencies for sensing, computing, and information storage

    Global wealth disparities drive adherence to COVID-safe pathways in head and neck cancer surgery

    Get PDF
    Peer reviewe

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease
    corecore