24 research outputs found

    The Role of CT Scanning in Multidimensional Phenotyping of COPD

    Get PDF
    BackgroundCOPD is a heterogeneous disease characterized by airflow obstruction and diagnosed by lung function. CT imaging is emerging as an important, noninvasive tool in phenotyping COPD. However, the use of CT imaging in defining the disease heterogeneity above lung function is not fully known.MethodsSeventy-five patients with COPD (58 men, 17 women) were studied with CT imaging and with measures of airway inflammation. Airway physiology and health status were also determined.ResultsThe presence of emphysema (EM), bronchiectasis (BE), and bronchial wall thickening (BWT) was found in 67%, 27%, and 27% of subjects, respectively. The presence of EM was associated with lower lung function (mean difference % FEV1, −20%; 95% CI, −28 to −11; P < .001). There was no difference in airway inflammation, exacerbation frequency, or bacterial load in patients with EM alone or with BE and/or BWT ± EM. The diffusing capacity of the lung for carbon monoxide/alveolar volume ratio was the most sensitive and specific parameter in identifying EM (area under the receiver operator characteristic curve, 0.87; 95% CI, 0.79-0.96). Physiologic cluster analysis identified three clusters, two of which were EM predominant and the third characterized by a heterogeneous combination of EM and BE.ConclusionsThe application of CT imaging can be useful as a tool in the multidimensional approach to phenotyping patients with COPD

    A study on the transition between seniority-type and collective excitations in 204Po and 206Po

    Get PDF
    Low-lying yrast states in 204Po and 206Po have been investigated by the γ-γ fast timing technique with LaBr3(Ce) detectors. Excited states of these nuclei were populated in the 197Au(11B,4n) and the 198Pt(12C,4n) fusion-evaporation reactions, respectively, at the FN-Tandem Facility at the University of Cologne. The lifetimes of the 4+1 states in both nuclei were measured, along with an upper limit for the 2+1 state in 204Po. The preliminary results are discussed in the scope of the systematic behavior of the transition strengths between yrast states in polonium isotopes

    Lifetime measurements of excited states in ¹⁶³W and the implications for the anomalous B(E2) ratios in transitional nuclei

    Get PDF
    This letter reports lifetime measurements of excited states in the odd-N nucleus 163W using the recoil-distance Doppler shift method to probe the core polarising effect of the i13/2 neutron orbital on the underlying soft triaxial even-even core. The ratio B(E2:21/2⁺ → 17/2⁺)/B(E2:17/2⁺ → 13/2⁺) is consistent with the predictions of the collective rotational model. The deduced B(E2) values provide insights into the validity of collective model predictions for heavy transitional nuclei and a geometric origin for the anomalous B(E2) ratios observed in nearby even-even nuclei is proposed

    Search for Isovector Valence-Shell Excitations in 140Nd and 142Sm via Coulomb excitation reactions of radioactive ion beams

    No full text
    Projectile Coulomb excitation experiments were performed at HIE-ISOLDE at CERN with the radioactive ion beams of 140Nd and 142Sm. Ions with an energy of 4:62 MeV/A were impinging on a 1.45 mg/cm2 thick 208Pb target. The γ-rays depopulating the Coulomb-excited states were recorded by the HPGe-array MINIBALL and scattered particles were detected by a double-sided silicon strip detector. Experimental intensities were used for the determination of electromagnetic transition matrix elements. A preliminary result of the B(M1; 2+3 → 2+1) of 140Nd and an upper limit for the case of 142Sm are revealing the main fragments of the proton-neutron mixed-symmetry 2+1;ms states

    Search for Isovector Valence-Shell Excitations in Nd-140 and Sm-142 via Coulomb excitation reactions of radioactive ion beams

    Get PDF
    Projectile Coulomb excitation experiments were performed at HIE-ISOLDE at CERN with the radioactive ion beams of 140Nd and 142Sm. Ions with an energy of 4.62 MeV/A were impinging on a 1.45 mg/cm2 thick 208Pb target. The γ-rays depopulating the Coulomb-excited states were recorded by the HPGe-array MINIBALL and scattered particles were detected by a double-sided silicon strip detector. Experimental intensities were used for the determination of electromagnetic transition matrix elements. A preliminary result of the B(M1; 2+ 3→2+ 1 ) of 140Nd and an upper limit for the case of 142Sm are revealing the main fragments of the proton-neutron mixed-symmetry 2+ 1,ms states.peerReviewe

    Coulomb Excitation of Proton-rich N = 80 Isotones at HIE-ISOLDE

    Get PDF
    A projectile Coulomb-excitation experiment was performed at the radioactive ion beam facility HIE-ISOLDE at CERN. The radioactive 140Nd and 142Sm ions were post accelerated to the energy of 4.62 MeV/A and impinged on a 1.45 mg/cm2-thin 208Pb target. The γ rays depopulating the Coulomb-excited states were recorded by the HPGe-array MINIBALL. The scattered charged particles were detected by a double-sided silicon strip detector in forward direction. Experimental γ-ray intensities were used for the determination of electromagnetic transition matrix elements. Preliminary results for the reduced transition strength of the B(M1 23+ to 21+)=0.35(19) μN2 of 140Nd and a first estimation for 142Sm have been deduced using the Coulomb-excitation calculation software GOSIA. The 23+ states of 140Nd and 142Sm show indications of being the main fragment of the proton-neutron mixed-symmetry 21, ms+ state.peerReviewe
    corecore