258 research outputs found

    Isolation and fine mapping of Rps6: An intermediate host resistance gene in barley to wheat stripe rust

    Get PDF
    A plant may be considered a nonhost of a pathogen if all known genotypes of a plant species are resistant to all known isolates of a pathogen species. However, if a small number of genotypes are susceptible to some known isolates of a pathogen species this plant maybe considered an intermediate host. Barley (Hordeum vulgare) is an intermediate host for Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust. We wanted to understand the genetic architecture underlying resistance to Pst and to determine whether any overlap exists with resistance to the host pathogen, Puccinia striiformis f. sp. hordei (Psh). We mapped Pst resistance to chromosome 7H and show that host and intermediate host resistance is genetically uncoupled. Therefore, we designate this resistance locus Rps6. We used phenotypic and genotypic selection on F2:3 families to isolate Rps6 and fine mapped the locus to a 0.1 cM region. Anchoring of the Rps6 locus to the barley physical map placed the region on two adjacent fingerprinted contigs. Efforts are now underway to sequence the minimal tiling path and to delimit the physical region harbouring Rps6. This will facilitate additional marker development and permit identification of candidate genes in the region

    Protocol for the "Michigan Awareness Control Study": A prospective, randomized, controlled trial comparing electronic alerts based on bispectral index monitoring or minimum alveolar concentration for the prevention of intraoperative awareness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of intraoperative awareness with explicit recall is 1-2/1000 cases in the United States. The Bispectral Index monitor is an electroencephalographic method of assessing anesthetic depth that has been shown in one prospective study to reduce the incidence of awareness in the high-risk population. In the B-Aware trial, the number needed to treat in order to prevent one case of awareness in the high-risk population was 138. Since the number needed to treat and the associated cost of treatment would be much higher in the general population, the efficacy of the Bispectral Index monitor in preventing awareness in all anesthetized patients needs to be clearly established. This is especially true given the findings of the B-Unaware trial, which demonstrated no significant difference between protocols based on the Bispectral Index monitor or minimum alveolar concentration for the reduction of awareness in high risk patients.</p> <p>Methods/Design</p> <p>To evaluate efficacy in the general population, we are conducting a prospective, randomized, controlled trial comparing the Bispectral Index monitor to a non-electroencephalographic gauge of anesthetic depth. The total recruitment for the study is targeted for 30,000 patients at both low and high risk for awareness. We have developed a novel algorithm that is capable of real-time analysis of our electronic perioperative information system. In one arm of the study, anesthesia providers will receive an electronic page if the Bispectral Index value is >60. In the other arm of the study, anesthesia providers will receive a page if the age-adjusted minimum alveolar concentration is <0.5. Our minimum alveolar concentration algorithm is sensitive to both inhalational anesthetics and intravenous sedative-hypnotic agents.</p> <p>Discussion</p> <p>Awareness during general anesthesia is a persistent problem and the role of the Bispectral Index monitor in its prevention is still unclear. The Michigan Awareness Control Study is the largest prospective trial of awareness prevention ever conducted.</p> <p>Trial Registration</p> <p>Clinical Trial NCT00689091</p

    Persistence of single species of symbionts across multiple closelyrelated host species

    Get PDF
    Some symbiont species are highly host-specific, inhabiting only one or a very few host species, and typically have limited dispersal abilities. When they do occur on multiple host species, populations of such symbionts are expected to become genetically structured across these different host species, and this may eventually lead to new symbiont species over evolutionary timescales. However, a low number of dispersal events of symbionts between host species across time might be enough to prevent population structure and species divergence. Overall, processes of evolutionary divergence and the species status of most putative multi-host symbiont systems are yet to be investigated. Here, we used DNA metabarcoding data of 6,023 feather mites (a total of 2,225 OTU representative sequences) from 147 infracommunities (i.e., the assemblage consisting of all mites of different species collected from the same bird host individual) to investigate patterns of population genetic structure and species status of three different putative multi-host feather mite species Proctophyllodes macedo Vitzthum, 1922, Proctophyllodes motacillae Gaud, 1953, and Trouessartia jedliczkai (Zimmerman, 1894), each of which inhabits a variable number of different closely related wagtail host species (genus Motacilla). We show that mite populations from different host species represent a single species. This pattern was found in all the mite species, suggesting that each of these species is a multi-host species in which dispersal of mites among host species prevents species divergence. Also, we found evidence of limited evolutionary divergence manifested by a low but significant level of population genetic structure among symbiont populations inhabiting different host species. Our study agrees with previous studies showing a higher than expected colonization opportunities in host-specific symbionts. Indeed, our results support that these dispersal events would allow the persistence of multi-host species even in symbionts with limited dispersal capabilities, though additional factors such as the geographical structure of some bird populations may also play a role.This work was supported by the MINECO CGL2011-24466 to RJ and CGL2015-69650-P to RJ and DS

    Genome-wide microRNA screening in Nile tilapia reveals pervasive isomiRs’ transcription, sex-biased arm switching and increasing complexity of expression throughout development

    Get PDF
    MicroRNAs (miRNAs) are key regulators of gene expression in multicellular organisms. The elucidation of miRNA function and evolution depends on the identification and characterization of miRNA repertoire of strategic organisms, as the fast-evolving cichlid fishes. Using RNA-seq and comparative genomics we carried out an in-depth report of miRNAs in Nile tilapia (Oreochromis niloticus), an emergent model organism to investigate evo-devo mechanisms. Five hundred known miRNAs and almost one hundred putative novel vertebrate miRNAs have been identified, many of which seem to be teleost-specific, cichlid-specific or tilapia-specific. Abundant miRNA isoforms (isomiRs) were identified with modifications in both 5p and 3p miRNA transcripts. Changes in arm usage (arm switching) of nine miRNAs were detected in early development, adult stage and even between male and female samples. We found an increasing complexity of miRNA expression during ontogenetic development, revealing a remarkable synchronism between the rate of new miRNAs recruitment and morphological changes. Overall, our results enlarge vertebrate miRNA collection and reveal a notable differential ratio of miRNA arms and isoforms influenced by sex and developmental life stage, providing a better picture of the evolutionary and spatiotemporal dynamics of miRNAs

    Evolution and networks in ancient and widespread symbioses between Mucoromycotina and liverworts

    Get PDF
    Like the majority of land plants, liverworts regularly form intimate symbioses with arbuscular mycorrhizal fungi (Glomeromycotina). Recent phylogenetic and physiological studies report that they also form intimate symbioses with Mucoromycotina fungi and that some of these, like those involving Glomeromycotina, represent nutritional mutualisms. To compare these symbioses, we carried out a global analysis of Mucoromycotina fungi in liverworts and other plants using species delimitation, ancestral reconstruction, and network analyses. We found that Mucoromycotina are more common and diverse symbionts of liverworts than previously thought, globally distributed, ancestral, and often co-occur with Glomeromycotina within plants. However, our results also suggest that the associations formed by Mucoromycotina fungi are fundamentally different because, unlike Glomeromycotina, they may have evolved multiple times and their symbiotic networks are un-nested (i.e., not forming nested subsets of species). We infer that the global Mucoromycotina symbiosis is evolutionarily and ecologically distinctive

    Interactions between Schistosoma haematobium group species and their Bulinus spp. intermediate hosts along the Niger River Valley

    Get PDF
    Background Urogenital schistosomiasis, caused by infection with Schistosoma haematobium, is endemic in Niger but complicated by the presence of Schistosoma bovis, Schistosoma curassoni and S. haematobium group hybrids along with various Bulinus snail intermediate host species. Establishing the schistosomes and snails involved in transmission aids disease surveillance whilst providing insights into snail-schistosome interactions/compatibilities and biology. Methods Infected Bulinus spp. were collected from 16 villages north and south of the Niamey region, Niger, between 2011 and 2015. From each Bulinus spp., 20–52 cercariae shed were analysed using microsatellite markers and a subset identified using the mitochondrial (mt) cox1 and nuclear ITS1 + 2 and 18S DNA regions. Infected Bulinus spp. were identified using both morphological and molecular analysis (partial mt cox1 region). Results A total of 87 infected Bulinus from 24 sites were found, 29 were molecularly confirmed as B. truncatus, three as B. forskalii and four as B. globosus. The remaining samples were morphologically identified as B. truncatus (n = 49) and B. forskalii (n = 2). The microsatellite analysis of 1124 cercariae revealed 186 cercarial multilocus genotypes (MLGs). Identical cercarial genotypes were frequently (60%) identified from the same snail (clonal populations from a single miracidia); however, several (40%) of the snails had cercariae of different genotypes (2–10 MLG’s) indicating multiple miracidial infections. Fifty-seven of the B. truncatus and all of the B. forskalii and B. globosus were shedding the Bovid schistosome S. bovis. The other B. truncatus were shedding the human schistosomes, S. haematobium (n = 6) and the S. haematobium group hybrids (n = 13). Two B. truncatus had co-infections with S. haematobium and S. haematobium group hybrids whilst no co-infections with S. bovis were observed. Conclusions This study has advanced our understanding of human and bovid schistosomiasis transmission in the Niger River Valley region. Human Schistosoma species/forms (S. haematobium and S. haematobium hybrids) were found transmitted only in five villages whereas those causing veterinary schistosomiasis (S. bovis), were found in most villages. Bulinus truncatus was most abundant, transmitting all Schistosoma species, while the less abundant B. forskalii and B. globosus, only transmitted S. bovis. Our data suggest that species-specific biological traits may exist in relation to co-infections, snail-schistosome compatibility and intramolluscan schistosome development
    • 

    corecore