3,788 research outputs found

    Are the distributions of Fast Radio Burst properties consistent with a cosmological population?

    Get PDF
    High time resolution radio surveys over the last few years have discovered a population of millisecond-duration transient bursts called Fast Radio Bursts (FRBs), which remain of unknown origin. FRBs exhibit dispersion consistent with propagation through a cold plasma and dispersion measures indicative of an origin at cosmological distances. In this paper we perform Monte Carlo simulations of a cosmological population of FRBs, based on assumptions consistent with observations of their energy distribution, their spatial density as a function of redshift and the properties of the interstellar and intergalactic media. We examine whether the dispersion measures, fluences, inferred redshifts, signal-to-noises and effective widths of known FRBs are consistent with a cosmological population. Statistical analyses indicate that at least 50 events at Parkes are required to distinguish between a constant co-moving FRB density, and a FRB density that evolves with redshift like the cosmological star formation rate density.Comment: 11 pages, 7 figures, 3 table

    Herschel evidence for disk flattening or gas depletion in transitional disks

    Get PDF
    Transitional disks are protoplanetary disks characterized by reduced near- and mid-infrared emission with respect to full disks. This characteristic spectral energy distribution indicates the presence of an optically thin inner cavity within the dust disk believed to mark the disappearance of the primordial massive disk. We present new Herschel Space Observatory PACS spectra of [OI] 63 micron for 21 transitional disks. Our survey complements the larger Herschel GASPS program "Gas in Protoplanetary Systems" (Dent et al. 2013) by quadrupling the number of transitional disks observed with PACS at this wavelength. [OI] 63 micron traces material in the outer regions of the disk, beyond the inner cavity of most transitional disks. We find that transitional disks have [OI] 63 micron line luminosities two times fainter than their full disk counterparts. We self consistently determine various stellar properties (e.g. bolometric luminosity, FUV excess, etc.) and disk properties (e.g. disk dust mass, etc.) that could influence the [OI] 63 micron line luminosity and we find no correlations that can explain the lower [OI] 63 micron line luminosities in transitional disks. Using a grid of thermo-chemical protoplanetary disk models, we conclude that either transitional disks are less flared than full disks or they possess lower gas-to-dust ratios due to a depletion of gas mass. This result suggests that transitional disks are more evolved than their full disk counterparts, possibly even at large radii.Comment: Accepted for publication in ApJ; 52 pages, 16 figures, 8 table

    Optical coherence tomography angiography: a non-invasive tool to image end-arterial system

    Get PDF
    Optical coherence tomography angiography (OCTA) is a relatively novel technology for in vivo imaging of vascular network. It uses moving erythrocytes as contrasting mechanism and avoids the use of intravenous dyes. A depth-resolved 3-dimensional image set can be generated within seconds using the technique of OCTA. Therefore, it possesses a great potential for widespread application in ophthalmic angiography. Herein we discuss the most common technologies behind OCTA and the scope of future technical improvement. We provide a perspective on advantages and disadvantages of OCTA over conventional fluorescein angiography and indocyanine green angiography. Lastly, current literature on the clinical application of OCTA in common ocular diseases including neovascular age-related macular degeneration, diabetic retinopathy, retinal artery and vein occlusion, and glaucoma are reviewed

    Relativistic spin precession in the binary PSR J1141-6545

    Full text link
    PSR J1141-6545 is a precessing binary pulsar that has the rare potential to reveal the two-dimensional structure of a non-recycled pulsar emission cone. It has undergone 25deg\sim 25 \deg of relativistic spin precession in the 18\sim18 years since its discovery. In this paper, we present a detailed Bayesian analysis of the precessional evolution of the width of the total intensity profile, to understand the changes to the line-of-sight impact angle (β\beta) of the pulsar using four different physically motivated prior distribution models. Although we cannot statistically differentiate between the models with confidence, the temporal evolution of the linear and circular polarisations strongly argue that our line-of-sight crossed the magnetic pole around MJD 54000 and that only two models remain viable. For both these models, it appears likely that the pulsar will precess out of our line-of-sight in the next 353-5 years, assuming a simple beam geometry. Marginalising over β\beta suggests that the pulsar is a near-orthogonal rotator and provides the first polarization-independent estimate of the scale factor (A\mathbb{A}) that relates the pulsar beam opening angle (ρ\rho) to its rotational period (PP) as ρ=AP0.5\rho = \mathbb{A}P^{-0.5} : we find it to be >6 deg s0.5> 6 \rm~deg~s^{0.5} at 1.4 GHz with 99\% confidence. If all pulsars emit from opposite poles of a dipolar magnetic field with comparable brightness, we might expect to see evidence of an interpulse arising in PSR J1141-6545, unless the emission is patchy.Comment: Accepted for publication in Astrophysical Journal Letter

    Kondo resonances and anomalous gate dependence of electronic conduction in single-molecule transistors

    Get PDF
    We report Kondo resonances in the conduction of single-molecule transistors based on transition metal coordination complexes. We find Kondo temperatures in excess of 50 K, comparable to those in purely metallic systems. The observed gate dependence of the Kondo temperature is inconsistent with observations in semiconductor quantum dots and a simple single-dot-level model. We discuss possible explanations of this effect, in light of electronic structure calculations.Comment: 5 pages, four figures. Supplementary material at http://www.ruf.rice.edu/~natelson/publications.htm

    Killing tensors in pp-wave spacetimes

    Full text link
    The formal solution of the second order Killing tensor equations for the general pp-wave spacetime is given. The Killing tensor equations are integrated fully for some specific pp-wave spacetimes. In particular, the complete solution is given for the conformally flat plane wave spacetimes and we find that irreducible Killing tensors arise for specific classes. The maximum number of independent irreducible Killing tensors admitted by a conformally flat plane wave spacetime is shown to be six. It is shown that every pp-wave spacetime that admits an homothety will admit a Killing tensor of Koutras type and, with the exception of the singular scale-invariant plane wave spacetimes, this Killing tensor is irreducible.Comment: 18 page

    Maximum Azimuthal Anisotropy of Neutrons from Nb-Nb Collisions at 400 AMeV and the Nuclear Equation of State

    Get PDF
    We measured the first azimuthal distributions of triple--differential cross sections of neutrons emitted in heavy-ion collisions, and compared their maximum azimuthal anisotropy ratios with Boltzmann--Uehling--Uhlenbeck (BUU) calculations with a momentum-dependent interaction. The BUU calculations agree with the triple- and double-differential cross sections for positive rapidity neutrons emitted at polar angles from 7 to 27 degrees; however, the maximum azimuthal anisotropy ratio for these free neutrons is insensitive to the size of the nuclear incompressibility modulus K characterizing the nuclear matter equation of state.Comment: Typeset using ReVTeX, with 3 ps figs., uuencoded and appende
    corecore