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Abstract. The Plant–Craig stochastic convection parameter-
ization (version 2.0) is implemented in the Met Office Re-
gional Ensemble Prediction System (MOGREPS-R) and is
assessed in comparison with the standard convection scheme
with a simple stochastic scheme only, from random param-
eter variation. A set of 34 ensemble forecasts, each with 24
members, is considered, over the month of July 2009. De-
terministic and probabilistic measures of the precipitation
forecasts are assessed. The Plant–Craig parameterization is
found to improve probabilistic forecast measures, particu-
larly the results for lower precipitation thresholds. The im-
pact on deterministic forecasts at the grid scale is neutral, al-
though the Plant–Craig scheme does deliver improvements
when forecasts are made over larger areas. The improve-
ments found are greater in conditions of relatively weak syn-
optic forcing, for which convective precipitation is likely to
be less predictable.

1 Introduction

Quantitative precipitation forecasting is recognized as one of
the most challenging aspects of numerical weather predic-
tion (NWP; Ebert et al., 2003; Montani et al., 2011; Geb-
hardt et al., 2011). While progress is continually being made
in improving the accuracy of single forecasts – through im-
provements in the model formulation as well as increases
in grid resolution – a complementary approach is the use

of ensembles in order to obtain an estimate of the uncer-
tainty in the forecast (Buizza et al., 2005; Montani et al.,
2011; Buizza et al., 2007; Bowler et al., 2008; Thirel et al.,
2010; Yang et al., 2012; Zhu, 2005; Abhilash et al., 2013;
Roy Bhowmik and Durai, 2008; Clark et al., 2011; Tennant
and Beare, 2013). Of course, ensemble forecasting systems
themselves remain imperfect, and one of the most important
problems is insufficient spread in ensemble forecasts, where
the forecast tends to cluster too strongly around rainfall val-
ues that turn out to be incorrect.

One reason for lack of spread in an ensemble is that model
variability is constrained by the number of degrees of free-
dom in the model, which is typically much less than that of
the real atmosphere. The members of an ensemble forecast
may start with a good representation of the range of possi-
ble initial conditions, but running exactly the same model
for each ensemble member means that the range of possible
ways of modelling the atmosphere – of which the model in
question is one – is not fully considered. Common ways of
accounting for model error are running different models for
each ensemble member (e.g. Mishra and Krishnamurti, 2007;
Berner et al., 2011), adding random perturbations to the ten-
dencies produced by the parameterizations (e.g. Buizza et al.,
1999; Bouttier et al., 2012), and randomly perturbing param-
eters in physics schemes (e.g. Bowler et al., 2008; Chris-
tensen et al., 2015).

Focusing on convective rainfall, and for model grid lengths
where convective rainfall is parameterized, another way of
accounting for model error is to introduce random variability
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in the convection parameterization itself (e.g. Lin and Neelin,
2003; Khouider et al., 2010; Plant and Craig, 2008; Ragone
et al., 2014). Ideally this should be done in a physically con-
sistent way, so that the random variability causes the param-
eterization to sample from the range of possible convective
responses on the grid scale. A recent overview is given by
Plant et al. (2015).

Such “stochastic” convection parameterization schemes
have been developed over the last 10 years and are just be-
ginning to be implemented and verified in operational fore-
casting set-ups, with some promise for the improvement of
probabilistic ensemble forecasts (e.g Teixeira and Reynolds,
2008; Bengtsson et al., 2013; Kober et al., 2015). The pur-
pose of the present study is to continue this pioneering work
of verifying probabilistic forecasts using stochastic convec-
tion parameterizations, by investigating the performance of
the Plant and Craig (2008) (PC) scheme in the Met Of-
fice Global and Regional Ensemble Prediction System (MO-
GREPS) (Bowler et al., 2008).

The PC scheme has been shown to produce rainfall vari-
ability in much better agreement with cloud-resolving model
results than for other non-stochastic schemes (Keane and
Plant, 2012) and has been shown to add variability in a phys-
ically consistent way when the model grid spacing is var-
ied (Keane et al., 2014). It has also been demonstrated that
the convective variability it produces, on scales of tens of
kilometres, can be a major source of model spread (Ball and
Plant, 2008) and further that its performance at large scales in
a model intercomparison is similar to that of more traditional
methods (Davies et al., 2013).

These are encouraging results, albeit from idealized mod-
elling set-ups, and it is important to establish whether or not
they might translate into better ensemble forecasts in a fully
operational NWP set-up. Groenemeijer and Craig (2012) ex-
amined seven cases using the Consortium for Small-scale
Modeling (COSMO) ensemble system with 7 km grid spac-
ing and compared the spread in an ensemble using only dif-
ferent realizations of the PC scheme (i.e. where the random
seed in the PC scheme was varied but the members were oth-
erwise identical) with that in an ensemble where additionally
the initial and boundary conditions were varied. They found
the spread in hourly accumulated rainfall produced by the
PC scheme to be 25–50 % of the total spread when the fields
were upscaled to 35 km. The present study investigates the
behaviour of the scheme in a trial of 34 forecasts with the
MOGREPS-R ensemble, using a grid length of 24 km. The
mass-flux variance produced by the PC scheme is inversely
proportional to the grid box area being used, and so it is not
obvious from the results of Groenemeijer and Craig (2012)
whether the stochastic variations of PC will contribute sig-
nificantly to variability within an ensemble system operating
at the scales of MOGREPS-R. Nonetheless, MOGREPS-R
has been shown, in common with most ensemble forecasting
systems, to produce insufficient spread relative to its forecast
error in precipitation (Tennant and Beare, 2013), suggesting

that there is scope for the introduction of a stochastic convec-
tion parameterization to be able to improve its performance.

Although the version of MOGREPS used here has now
been superseded, the present study represents the first time
that the scheme has been verified in an operationally used
ensemble forecasting system for an extended verification pe-
riod, and it provides the necessary motivation for more ex-
tensive tuning and verification studies in a more current sys-
tem. As well as this, the present study aims to reveal more
about the behaviour of the scheme itself, building on work
referenced above, as well as on recent work by Kober et al.
(2015), which focused on individual case studies.

The paper compares the performance of the PC scheme
with the default MOGREPS convection parameterization,
based on Gregory and Rowntree (1990), in order to seek ev-
idence that accounting for model error by using a stochas-
tic convection parameterization can lead to improvements
in ensemble forecasts. Of course, the two parameterizations
are different in other ways than the stochasticity of the PC
scheme: it is therefore possible that any differences in per-
formance are due to other factors. Nonetheless, the default
MOGREPS scheme has benefitted from much experience in
being developed alongside the Met Office Unified Model
(Lean et al., 2008, UM), whereas relatively modest efforts
were made here to adapt the PC scheme to the host ensemble
system: thus, any improvements that the PC scheme shows
over the default scheme are of clear interest.

2 Methods

2.1 The Plant–Craig stochastic convection
parameterization

The Plant and Craig (2008) scheme operates, at each model
grid point, by reading in the vertical profile from the dy-
namical core and calculating what convective response is re-
quired to stabilize that profile. It is based on the Kain–Fritsch
convection parameterization (Kain and Fritsch, 1990; Kain,
2004), adapting the plume model used there and also using
a similar formulation for the closure, based on dilute con-
vective available potential energy (CAPE). It generalizes the
Kain–Fritsch scheme by allowing for more than one cloud
in a grid box and by allowing the size and number of clouds
to vary randomly. Details of its implementation in an ideal-
ized configuration of the UM are given by Keane and Plant
(2012); this would be regarded as version 1.1. The important
differences in the implementation for the present study, to
produce version 2.0, are presented here.

The scheme allows for the vertical profile from the dynam-
ical core to be averaged in horizontal space and/or in time
before it is input. This means that the input profile is more
representative of the large-scale (assumed quasi-equilibrium)
environment and is less affected by the stochastic perturba-
tions locally induced by the scheme at previous time steps. It
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was decided in the present study to use different spatial av-
eraging extents over ocean and over land, in order that oro-
graphic effects were not too heavily smoothed. The spatial
averaging strategy implemented was to use a square of 7× 7
grid points over the ocean and 3×3 grid points over land; the
temporal averaging strategy was to average over the previous
seven time steps (each of 7.5 min) and the current time step.
The cloud lifetime was set to 15 min. As well as using the av-
eraged profile for the closure calculation, the plume profiles
were also calculated for ascent within the averaged environ-
ment.

Initial tests showed that the scheme was yielding too small
a proportion of convective precipitation over the domain.
Two further parameters were adjusted from the study by
Keane and Plant (2012), in order to increase this fraction: the
mean mass flux per cloud 〈m〉 and the root mean square cloud
radius

√
〈r2〉. Similar changes were made for the same rea-

son by Groenemeijer and Craig (2012) in their mid-latitude
tests over land and reflect the fact that the original settings
in Plant and Craig (2008) and Keane and Plant (2012) were
chosen to match well with cloud-resolving model simula-
tions of tropical oceanic convection. Specifically, the mean
mass flux per cloud was reduced here from 2× 107 kg s−1 to
0.8× 107 kgs−1 in order to increase the number of plumes
produced by the scheme. The entrainment rates used in the
scheme are inversely proportional to cloud radius, and a
probability density function (pdf) of cloud radius is used
characterized by the root mean square cloud value

√
〈r2〉.

This was increased from 450 to 600 m, in order to produce
less strongly entraining plumes. This had some impact on the
convective precipitation fraction, but the scheme still yielded
a relatively low proportion of convective rain: 12 % in these
tests, as compared with 50 % for the standard scheme. The
overall amount of rainfall was similar for the two schemes,
with the dynamics compensating for the reduction in con-
vective rain produced and ensuring that the instability was
suitably removed by the dynamics and convection scheme
combined in both cases.

There is no correct answer for the convective fraction,
which is both model- and resolution-dependent in current op-
erational practice. For example, the current ECMWF model
has a global average of about 60 % (Bechtold, 2015). Doubt-
less the convective precipitation fraction produced by the
Plant–Craig scheme in MOGREPS-R could be increased fur-
ther with stronger changes to parameters, and we remark that
Groenemeijer and Craig (2012) set

√
〈r2〉 to 1250 m for their

tests, which would likely have such an effect.The convective
rainfall fraction will also depend on the details of the host
model, its large-scale cloud parameterization and the grid
spacing, and the settings of the convective parameterization
itself. For example, the Plant–Craig scheme in COSMO has
been found to yield a convective fraction of 36 % at 28 km
grid spacing in the extra-tropics (Selz and Craig, 2015a), and
in ICON it was found to yield a convective fraction of 59 %
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Figure 1. An outline of the MOGREPS NAE domain, with its ro-
tated latitude–longitude grid. The contours are for reference and are
derived from the data set used in the present study to separate the
domain into land and ocean areas. The grey shading shows the re-
gion for which radar-derived precipitation data were available.

at 25 km grid spacing, also in the extra-tropics (Tobias Selz,
personal communication, 2016). We attempted only minimal
tuning here and were deliberately rather conservative about
the parameter choices made, with the intention that the re-
sults can reasonably be considered to represent a lower limit
of the possible impact of a more thoroughly adapted scheme.

2.2 Description of MOGREPS

The Met Office Global and Regional Ensemble Prediction
System has been developed to produce short-range proba-
bilistic weather forecasts (Bowler et al., 2008). It is based
on the UM (Davies et al., 2005), with 24 ensemble mem-
bers, and is comprised of global and regional ensembles. In
the present study, the regional ensemble MOGREPS-R was
used, with a resolution of 24 km and 38 vertical levels. This
covers a North Atlantic and European (NAE) domain, which
is shown in Fig. 1. The model was run on a rotated latitude–
longitude grid, with real latitude and longitude locations of
the North Pole and the corners of the domain given in Ta-
ble 1. The regional ensemble was driven by initial and bound-
ary conditions from the global ensemble, as described by
Bowler et al. (2008). The operational system has been up-
graded since these tests, and so the present study represents
a “proof of concept” for a stochastic convection scheme in a
full-complexity regional or global ensemble prediction sys-
tem, rather than a detailed technical recommendation for the
latest version of MOGREPS.

Stochastic physics is already included in the regional MO-
GREPS, in the form of a random parameters scheme, where
a number of selected parameters are stochastically perturbed
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Table 1. Locations of the North Pole and the corners of the domain
of the NAE rotated grid, in terms of real latitude and longitude.

Location latitude (◦N) longitude (◦E)

North Pole 37.5 177.5
Bottom left 16.3 −19.8
Top left 72.7 -80.0
Bottom right 16.5 14.2
Top right 73.2 74.1

during the forecast run (Bowler et al., 2008). This scheme
was retained for the present study, given that the Plant–Craig
scheme is intended to account only for the variability in the
convective response for a given large-scale state, and as such
its design does not conflict with the inclusion of a method
to treat parameter uncertainty within other parameterization
schemes. The MOGREPS random parameter scheme does
introduce variability in parameters that appear within the
standard UM convection scheme, which is based on the Gre-
gory and Rowntree (1990) scheme with subsequent devel-
opments as described by Martin et al. (2006). No stochastic
parameter variation is applied for any of the parameters ap-
pearing in the Plant–Craig scheme. Thus, there is no “double
counting” of parameterization uncertainty in these tests, but
rather we are comparing different methods of accounting for
convective uncertainties in a framework which also includes
a simple stochastic treatment of uncertainties in other aspects
of the model physics.

The forecasts using the Plant–Craig scheme were obtained
by rerunning the regional version of MOGREPS, with the
standard convection scheme replaced by the Plant–Craig
scheme, and driven by initial and boundary conditions taken
from the same archived data that were used for the opera-
tional forecasts. These are compared with the forecasts pro-
duced operationally during the corresponding period, so that
the only difference between the two sets of forecasts is in
the convection parameterization scheme. The study used the
UM at version 7.3. The model time step was 7.5 min, within
which the convection scheme was called twice, and the fore-
cast length was 54 h.

2.3 Time period investigated

The time period investigated was from 10 until 30 July 2009.
This length of time was chosen as being sufficient to ob-
tain statistically meaningful results, but without requiring a
more lengthy experiment that would only be justified by a
more mature system. The particular month was chosen partly
for convenience and partly as a period that subjectively had
experienced plentiful convective rain over the UK, there-
fore providing a good test of a convective parameterization
scheme.

Experimental forecasts with the Plant–Craig scheme were
generated twice daily (at 06:00 and 18:00 UTC) for compar-

Table 2. Start times of forecasts investigated in this study (all dates
in July 2009).

10, 18:00 UTC 16, 18:00 UTC 21, 06:00 UTC 27, 18:00 UTC
11, 06:00 UTC 17, 06:00 UTC 21, 18:00 UTC 28, 06:00 UTC
11, 18:00 UTC 17, 18:00 UTC 22, 06:00 UTC 28, 18:00 UTC
12, 06:00 UTC 18, 06:00 UTC 23, 06:00 UTC 29, 06:00 UTC
12, 18:00 UTC 18, 18:00 UTC 23, 18:00 UTC 29, 18:00 UTC
13, 06:00 UTC 19, 06:00 UTC 24, 18:00 UTC 30, 06:00 UTC
14, 06:00 UTC 19, 18:00 UTC 25, 06:00 UTC 30, 18:00 UTC
15, 18:00 UTC 20, 06:00 UTC 25, 18:00 UTC
16, 06:00 UTC 20, 18:00 UTC 26, 06:00 UTC

ison with the operational forecast which was taken from the
archive. On some days the archive forecast was missing and
so no experimental forecast was generated. In total 34 fore-
casts were generated, with start times shown in Table 2.

2.4 Validation

A detailed validation was carried out against Nimrod radar
rainfall data (Harrison et al., 2000; Smith et al., 2006). This
observational data set is only available over the UK (as
shown in Fig. 1), and so most of the validation in the fol-
lowing focuses on this region. The forecasts were assessed
on the basis of 6-hourly rainfall accumulations, every 6 h, for
lead times from 0 to 54 h.

2.4.1 Fractions skill score

This score (denoted FSS) was developed by Roberts and
Lean (2008), and was used by Kober et al. (2015) to as-
sess the quality of deterministic forecasts produced using
the Plant–Craig scheme for two case studies. Note that we
use the term “deterministic”, in this manuscript, to refer to
forecasts providing a single quantity (for example, a single-
member forecast, or the ensemble mean), and “probabilistic”
to refer to forecasts providing a probabilistic distribution (or,
at the very least, a deterministic forecast, with, in addition,
an assessment of its uncertainty). The FSS is determined,
at a given grid point X, by comparing the fractions of ob-
served, O, and forecast, F , grid points exceeding a specific
rainfall threshold, within a specific spatial window centred at
X. Here we define

FSS= 1−
〈(F −O)2〉

〈F 2〉+ 〈O2〉
, (1)

where the angled brackets 〈. . .〉 indicate averages over the
grid point centres X for which observations are available,
over the different forecast initialization times, and here over
the different ensemble members (so that effectively a sepa-
rate score is calculated for each ensemble member, and these
are averaged to produce the overall score denoted here by
FSS). The spatial window (over which the fractions are eval-
uated) gives the scale at which the score is applied, so that
the FSS can be used to assess the performance of forecasts
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both at the grid scale and at larger scales. The division by
〈F 2
〉+〈O2

〉 normalizes against the smoothing applied at the
given scale, so that the score always ranges between 0 and 1.
The FSS is positively oriented.

2.4.2 Brier scores

In order to determine whether or not the variability intro-
duced by the Plant–Craig scheme is added where it is most
needed, the Brier skill score (BSS; Wilks, 2006) was applied
to both forecast sets, using the same observational data, to
assess the respective quality of the probabilistic forecasts.
The Brier score is a threshold-based probabilistic verification
score and is given by the mean difference between the fore-
cast probability of exceeding a given threshold (this probabil-
ity is here simply taken to be the fraction of ensemble mem-
bers which forecast precipitation greater than the threshold)
and the observed probability (i.e 1 if the observed precipita-
tion is above the threshold and 0 if it is below). To obtain the
BSS, this is compared with a reference score; the reference
score is here taken to be that calculated from always forecast-
ing a probability taken from the observation data set (i.e. the
proportion of times the observed precipitation is above the
threshold). Thus,

BSS= 1−
〈(f − o)2〉

〈(〈o〉− o)2〉
, (2)

where f is the forecast probability; o is the observation (0 or
1); and 〈o〉 is the “climatological” probability based on the
observation set. The angle brackets denote an average over
the entire forecast set. Although 〈o〉 is only available a poste-
riori to the event, it does provide a useful “base” for compar-
ison: if the forecast issued is no better than one given by sim-
ply always issuing a climatological average (i.e. if BSS≤ 0),
then the forecast can be said to have no skill.

2.4.3 Ensemble added value

This measure aims to assess the benefit of using an ensem-
ble, as opposed to a single forecast randomly selected from
the ensemble. It was recently developed and described in de-
tail by Ben Bouallègue (2015), and a brief outline is given
here. The score is of particular interest to the present study, as
this measure should highlight the advantages and disadvan-
tages of using the stochastic Plant–Craig methodology and
provides an assessment that is less affected by structural dif-
ferences between the Plant–Craig scheme and the Gregory–
Rowntree (GR) scheme.

The ensemble added value (EAV) is based on the quantile
score (QS) (Koenker and Machado, 1999; Gneiting, 2011),
which is used to assess probabilistic forecasts at a given
probability level (equivalently, the Brier score assesses prob-
abilistic forecasts at a given value threshold). If a quantile
forecast φτ of the τ th quantile of a meteorological variable is
given, then the quantile score for that quantile is interpreted

as

qτ = 〈(ω−φτ )(τ − I {ω < φτ })〉 (3)

where ω is the observed value, the function I (x) is defined
as 1 if x is true and 0 if x is false and the angle brackets
denote an average over all forecasts, as for the Brier skill
score. In this way, a forecast for a low quantile is penalized
more heavily if it is above the observed value than if it is
below the observed value, and vice versa for a forecast for a
high quantile (note that the score is negatively oriented). The
score for the 50 % quantile is simply the mean absolute error.

The QS can, like the Brier score, be decomposed into
a reliability and a resolution component (Bentzien and
Friederichs, 2014). In order to calculate the EAV, a poten-
tial QS, Qτ , is defined as the total QS minus its reliability
component. The QS is here evaluated by first sorting the en-
semble members, and interpreting the mth sorted ensemble
member as the (m− 0.5)/24 quantile forecast. The EAV is
then given by summing the potential QSs, Qm, over the 24
members and comparing with an equivalent sum over refer-
ence potential QSs:

EAV= 1−
∑
mQm∑
mQ

ref
m

. (4)

The reference forecast is created by defining the quantile
as simply a randomly selected member of the ensemble, so
that the reference forecast represents the score which could
have been obtained with only one forecast (a single mem-
ber is randomly selected, with replacement, once for the en-
tire period but separately for each quantile). The EAV thus
measures the quality of the ensemble forecast, relative to the
quality of the individual members of the ensemble.

2.5 Separation into weakly and strongly forced cases

Groenemeijer and Craig (2012) applied the Plant–Craig
scheme in an ensemble forecasting system for seven case
studies, with various synoptic conditions, and showed that
the proportion of ensemble variability arising from the use of
the stochastic scheme (as opposed to that arising from varia-
tions in the initial and boundary conditions) depends on the
strength of the large-scale forcing, as measured by the large-
scale vorticity maximum. In particular, the stronger the large-
scale forcing, the lower the proportion of the variability that
comes from the stochastic scheme.

Kober et al. (2015) investigated two of the case studies fur-
ther, by verifying forecasts using the Plant–Craig scheme and
using a non-stochastic convection scheme. They found that
the improvement in forecast quality from using the Plant–
Craig scheme was significantly higher for the more weakly
forced of the two cases, since the additional grid-scale vari-
ability introduced by the stochastic scheme is more impor-
tant.

As part of the present study, we extend the work of Kober
et al. (2015) by separating our validation period into dates
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Table 3. Categorization of 12 h periods (centred at the time given)
investigated in this study into weak and strong synoptic forcing (all
dates in July 2009).

10, 00:00 UTC Weak 17, 12:00 UTC Strong 25, 00:00 UTC Weak
10, 12:00 UTC Strong 18, 00:00 UTC Strong 25, 12:00 UTC Weak
11, 00:00 UTC Strong 18, 12:00 UTC Weak 26, 00:00 UTC Strong
11, 12:00 UTC Strong 19, 00:00 UTC Strong 26, 12:00 UTC Strong
12, 00:00 UTC Strong 19, 12:00 UTC Weak 27, 00:00 UTC Strong
12, 12:00 UTC Strong 20, 00:00 UTC Weak 27, 12:00 UTC Weak
13, 00:00 UTC Weak 20, 12:00 UTC Weak 28, 00:00 UTC Strong
13, 12:00 UTC Weak 21, 00:00 UTC Strong 28, 12:00 UTC Strong
14, 00:00 UTC Strong 21, 12:00 UTC Strong 29, 00:00 UTC Strong
14, 12:00 UTC Strong 22, 00:00 UTC Strong 29, 12:00 UTC Strong
15, 00:00 UTC Weak 22, 12:00 UTC Strong 30, 00:00 UTC Weak
15, 12:00 UTC Weak 23, 00:00 UTC Weak 30, 12:00 UTC Weak
16, 00:00 UTC Weak 23, 12:00 UTC Weak 31, 00:00 UTC Weak
16, 12:00 UTC Weak 24, 00:00 UTC Weak 31, 12:00 UTC Strong
17, 00:00 UTC Strong 24, 12:00 UTC Weak

for which the synoptic forcing is relatively weak or strong.
We then compare any improvement in the forecasts us-
ing the Plant–Craig scheme, over those using the Gregory–
Rowntree scheme, for the two sets of forecasts, to assess over
an extended period whether the benefit of using a stochas-
tic scheme is indeed greater when the synoptic forcing is
weaker.

The separation into weakly and strongly forced cases was
carried out a posteriori to the event based on surface analysis
charts. The aim here is not to develop an adaptive forecast-
ing system, but rather to develop understanding of the be-
haviour of the Plant–Craig scheme. Nonetheless, the results
may also be interpreted as providing evidence that such a
system may be feasible if the strength of the synoptic forc-
ing could be predicted in advance (using, for example, the
convective adjustment timescale as discussed by Keil et al.,
2014). The period was divided into 12 h sections, centred
on 00:00 or 12:00 UTC, and a surface analysis chart valid
at the respective centre time was used to determine whether
to categorize the section as weakly or strongly forced. The
00:00 UTC analyses were taken from Wetterzentrale (2009),
and the 12:00 UTC analyses from Eden (2009).

The separation was conducted by assigning periods with
discernible cyclonic and/or frontal activity over or close to
the UK as strongly forced and the rest as weakly forced, with
some additional adjustment of the preliminary categorization
based on the written reports by Eden (2009). The periods
were categorized as in Table 3.

3 Results

3.1 Fractions skill score

The quality of the respective deterministic forecasts (i.e.
those produced by individual ensemble members, with no
supplementary indication of the forecast uncertainty) using
GR and PC is assessed using Figs. 2, 3, and 4. The per-

formance of the schemes is overall similar, with PC being
superior for low thresholds (in contrast to the findings of
Kober et al., 2015) and short lead times and GR for moderate
thresholds. With upscaling (Figs. 3 and 4), the performance
of both schemes improves for all thresholds and lead times.
The PC scheme benefits particularly from the upscaling at
higher thresholds and longer lead times, sometimes perform-
ing significantly better than the GR scheme, where at the grid
scale the performance was equal. In general, the difference
in the scores between the two schemes does not reach such
high values as those seen in Kober et al. (2015), although
this could be due to the fact that they investigated individual
case studies which were specifically selected to test the im-
pact of the stochastic scheme, whereas our results are scores
averaged over an extended period.

In general, then, the schemes perform similarly overall,
and the impact of using a stochastic scheme on the FSS is
modest. Indeed, the fact that there is no skill for the highest
threshold, for either scheme, is more important. This lack of
skill could be simply due to the fact that the case study period
was too short to obtain a statistically significant sample of
extreme rain events. However, it is also true that MOGREPS
significantly overforecasts heavy rain over the UK for this
period (see Fig. 13).

3.1.1 Separation into weakly and strongly forced cases

Figure 5 shows the difference in FSS between PC and GR, for
forecasts separated into weakly and strongly forced cases, as
described in Section 2. It can be seen that, with no averag-
ing, PC is better for the smallest thresholds but worse for the
moderate thresholds, while with upscaling the relative per-
formance for moderate and higher thresholds is improved,
especially for the weakly forced cases.

PC generally performs better than GR for weakly forced
cases and worse for strongly forced cases. While both
schemes benefit from upscaling the score, this benefit is
greater for PC. The results agree well with those of Kober
et al. (2015) for two example cases, where the Plant–Craig
scheme benefits more from the upscaling than the non-
stochastic scheme and performs relatively better for the
weakly forced than for the strongly forced case.

Moreover, it is clear that the upscaling is more beneficial
to the PC scheme (relative to the GR scheme) for the weakly
forced cases than for the strongly forced cases. The inter-
pretation is that the PC scheme provides a better statistical
description of small-scale, weakly forced convection than a
non-stochastic scheme. This will not provide any improve-
ment to the FSS evaluated at the grid scale, since the convec-
tion is placed randomly, but it does improve the FSS when
it is evaluated over a neighbourhood of grid points, so that
it becomes a more statistical evaluation of the quality of the
scheme.
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Figure 2. Fractions skill score computed for grid-scale data for the
Gregory–Rowntree scheme (top), the Plant–Craig scheme (centre),
and the difference between the two schemes (Plant–Craig minus
Gregory–Rowntree, bottom).

3.2 Brier score

The quality of the probabilistic forecasts, with respect to
forecasts using the observed climatology, is assessed using
Brier skill scores, plotted in Fig. 6. While neither scheme has
skill for high thresholds, PC performs substantially better for
medium and low thresholds, for all lead times. In particu-
lar, PC has skill in predicting whether or not rain will occur
(zero threshold), while GR does not. Further analysis shows
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Figure 3. Fractions skill score for the Gregory–Rowntree scheme
(top), the Plant–Craig scheme (centre), and the difference between
the two schemes (Plant–Craig minus Gregory–Rowntree, bottom).
The neighbourhood area is (120 km)2, corresponding to the central
grid box and two grid boxes in each direction.

that this is also the case for thresholds between 0 and 0.05
(not shown).

The decomposition of the Brier score into reliability
(Fig. 7) and resolution (Fig. 8) is also shown (note that the
difference is taken in the opposite direction for reliability
so that the colour scale must not be reversed). The Plant–
Craig scheme improves both components of this score; the
improvement for reliability is rather higher than that for res-
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Figure 4. Fractions skill score for the Gregory–Rowntree scheme
(top), the Plant–Craig scheme (centre), and the difference between
the two schemes (Plant–Craig minus Gregory–Rowntree, bottom).
The neighbourhood area is (216 km)2, corresponding to the central
grid box and four grid boxes in each direction.

olution. The scores for both reliability and resolution are low
for the higher thresholds, which is probably a consequence of
the fact that there are insufficient data to assess such extreme
values.

3.2.1 Separation into weakly and strongly forced cases

Figure 9 shows the Brier skill scores as a function of thresh-
old, separated into strongly and weakly forced cases. The
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Figure 5. Fractions skill score for the Plant–Craig scheme, minus
that for the Gregory–Rowntree scheme, for strongly forced cases
(full lines) and weakly forced cases (dashed lines), with no averag-
ing (top), with a neighbourhood area of two grid boxes in each di-
rection (centre), and with a neighbourhood area of four grid boxes
in each direction (bottom). The score shown is the average over all
lead times.

forecasts are improved using PC for both sets of cases,
and the difference is considerably greater for weakly forced
cases, where GR has almost no skill. This can be inter-
preted in terms of the fact that small-scale variability is rel-
atively more important for the weakly forced cases, and en-
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Figure 6. Brier skill score for the Gregory–Rowntree scheme (top),
the Plant–Craig scheme (centre), and the difference between the two
schemes (Plant–Craig minus Gregory–Rowntree, bottom). For the
difference plot, instances where both skill scores are lower than zero
are not plotted.

semble members using the Plant–Craig scheme differ from
each other more than for the strongly forced cases, where
initial and boundary condition variability is relatively more
important (Groenemeijer and Craig, 2012). Our result is
similar to what was found by Kober et al. (2015), where
the Plant–Craig scheme was found to perform better than a
non-stochastic scheme for a weakly forced case, and at low
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Figure 7. Brier score reliability for the Gregory–Rowntree scheme
(top), the Plant–Craig scheme (centre), and the difference between
the two schemes (Gregory–Rowntree minus Plant–Craig, bottom).

thresholds, but worse than the non-stochastic Tiedtke (1989)
scheme for a strongly forced case.

3.3 Ensemble added value

The EAV is plotted in Fig. 10. The PC scheme performs
substantially better for this score across lead times, and the
improvement is of a similar magnitude to that of the Brier
score. This suggests that the improvement in the probabilis-
tic forecast from using PC comes from the stochasticity of
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Figure 8. Brier score resolution for the Gregory–Rowntree scheme
(top), the Plant–Craig scheme (centre), and the difference between
the two schemes (Plant–Craig minus Gregory–Rowntree, bottom).

the scheme, since the EAV is measured against individual
forecasts from the same ensemble: it should, therefore, be
“normalized” against differences in the underlying convec-
tion scheme which are not related to the stochasticity. The in-
terpretation here is that, while structural differences between
two convection schemes will lead to differences in the quality
of the ensemble forecasts, this will mainly be due to differ-
ences in the quality of individual members of the ensemble.
The stochastic character of the PC scheme may or may not
improve the quality of the individual members, but it is pri-

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Threshold (mm hr )

B
rie

r 
sk

ill
 s

co
re

Plant−Craig strong forcing
Plant−Craig weak forcing
Gregory−Rowntree strong forcing
Gregory−Rowntree weak forcing

–1

Figure 9. Brier skill score for the Gregory–Rowntree scheme (green
lines) and the Plant–Craig scheme (red lines), averaged over all lead
times, for cases with strong forcing (full lines) and weak forcing
(dashed lines), as a function of threshold. The reference for the skill
score is the observed climatology. The axes have been chosen to
focus on where the skill score is above zero.

marily designed to improve the quality of the ensemble as a
whole.

Note that the ensemble forecasts using the GR scheme also
have a positive EAV, representing the value added by the mul-
tiple initial and boundary conditions provided by the global
model, and by the stochasticity coming from the random pa-
rameters scheme. Since these factors are also present in the
ensemble forecasts using the PC scheme, it can be interpreted
that the fractional difference between the two EAVs repre-
sents the value added by the stochastic character of the PC
scheme as a fraction of the value added by all the ensemble
generation techniques in MOGREPS.

3.4 General climatology

Although Nimrod radar observations were only available
over a restricted part of the forecast domain, it is also of in-
terest to compare the forecasts over the whole domain. Fig-
ure 11 shows the convective fraction: that is, the amount of
rainfall which came from the convection scheme divided by
the total amount of rain from the convection scheme and grid-
scale precipitation. Both schemes produce more convective
rain over land, and the difference between the fractions over
land and sea is in proportion to the fraction over the whole
domain; the fractions are fairly constant with forecast lead
time.

As discussed in Sect. 2.1, the convective fraction is much
lower for PC than for GR, suggesting that adjusting parame-
ters to increase this fraction would further increase the PC in-
fluence on the forecast (for example, Groenemeijer and Craig
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Figure 10. Ensemble added value (EAV) for the Gregory–Rowntree
scheme (green line) and the Plant–Craig scheme (red line) as a func-
tion of forecast lead time.

(2012) used a reduced closure timescale to increase the activ-
ity of the PC scheme). The reduced convective rainfall in the
case of PC was compensated for by a corresponding increase
in the grid-scale rainfall (so that the total amount of rainfall in
the two cases was roughly the same). Whether this increase
in grid-scale rainfall improves or degrades the forecast is not
clear, so there is some uncertainty as to how much of the im-
provement observed over the UK is due to the stochasticity
of the scheme and how much may be related to the convec-
tive fraction. The ensemble added value is intended to isolate
the effects of the stochasticity and provides strong evidence
that a significant amount of the forecast improvement does
indeed come from this. However, it is possible that further
improvements in the forecast due to increasing the convec-
tive fraction from the PC scheme (and thus increasing the
beneficial effects of the stochasticity) would be offset by a
reduction in quality due to the lower activity of the grid-scale
precipitation.

The ensemble spread is shown as a function of lead time in
Fig. 12, over the whole domain and separately over land and
over ocean. Both schemes produce more spread over land,
but the difference between PC and GR is also much greater
over land. This is presumably due to the fact that PC has a
higher convective fraction over land and is therefore more
able to influence the spread. The spread increases with fore-
cast lead time and does so more quickly with PC than with
GR.

Figure 13 shows density plots of rainfall from the two
schemes, and from the observations, over the UK part of the
domain, for a lead time of 30 to 36 h. It is clear that the model
produces too many instances of heavy rainfall for this period
and that this is exacerbated by the extra variability introduced
by the PC scheme. However, as shown earlier in this section,
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Figure 11. Convective fraction as a function of forecast lead time,
for the Gregory–Rowntree scheme (green lines) and the Plant–Craig
scheme (red lines), over land (dashed lines), over ocean (dotted
lines), and in total (full lines), for the full NAE domain.

neither scheme has any skill for large thresholds. It is clear
from Fig. 13 that this is partly due to overproduction of heavy
rain, although it is also the case that the case study was of in-
sufficient length to fully assess such extreme values.

Figure 14 shows that the PC scheme also produces more
heavy rainfall than the GR scheme over ocean (here for a lead
time of 30 to 36 h). This suggests that one possible approach
to tuning the PC scheme could be to apply less input averag-
ing over the ocean, since Keane et al. (2014) have shown that
applying more input averaging increases the variability and,
therefore, the tails of the distribution.

Although a lead time of 30 to 36 h was chosen for Figs. 13
and 14, similar conclusions could be drawn for the plots for
other lead times (not shown). The exception to this statement
is that for the first 6 h, for which the forecasts had not devel-
oped sufficiently for the curves to lie significantly apart from
each other.

3.4.1 Validation over the whole NAE domain

A validation using the routine verification system was also
performed for the two set-ups, covering land areas over the
whole forecast domain. This calculates various forecast skill
scores, by comparing against SYNOP observations at the sur-
face and at a height of 850 hPa, and yielded a mixed as-
sessment of the performance of the PC scheme against the
GR scheme. For example, the continuous ranked probability
score, which assesses both the forecast error and how well
the ensemble spread predicts the error (Hersbach, 2000), was
improved by roughly 10 % on using the PC scheme for rain-
fall but degraded by about 10 % for temperature and pressure.
The impact on the wind forecast was broadly neutral.
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Figure 13. Density plots for accumulated rainfall for the period of
30 to 36 h lead time, over the UK part of the domain, for forecasts
with the Gregory–Rowntree scheme (green line), the Plant–Craig
scheme (red line), and observations (black line).

This shows that, while the improvements demonstrated in
this section hold for other areas outside the UK, this has come
at a cost to the quality of the forecast for some of the other
variables. An important advantage of using a stochastic con-
vection scheme, over a statistical downscaling procedure, is
its feedback on the rest of the model, and it is important that
this feedback is of benefit. The recent analysis by Selz and
Craig (2015a) is very encouraging in this regard, demonstrat-
ing the processes of upscale error growth from convective un-
certainties can be well reproduced by the PC scheme, in good
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Figure 14. Density plots for accumulated rainfall for the period of
30 to 36 h lead time, over the entire NAE domain, for forecasts with
the Gregory–Rowntree scheme (green line) and the Plant–Craig
scheme (red line) over ocean.

agreement with the behaviour of large-domain simulations in
which the convection is simulated explicitly (Selz and Craig,
2015b).

4 Conclusions

A physically based stochastic scheme for the parameteriza-
tion of deep convection has been evaluated by comparing
probabilistic rainfall forecasts produced using the scheme in
an operational ensemble system with those from the same
ensemble system with its standard deep convection parame-
terization. The impact of using a stochastic scheme on deter-
ministic forecasts is broadly neutral, although there is some
improvement when larger areas are assessed. This is relevant
to applications such as hydrology, where rainfall over an area
larger than a grid box can be more relevant than rainfall on
the grid box scale.

The Plant–Craig scheme has been shown to have a positive
impact on probabilistic forecasts for light and medium rain-
fall, while neither scheme is able to skillfully forecast heavy
rainfall. The impact of the scheme is greater for weakly
forced cases, where subgrid-scale variability is more impor-
tant. Keil et al. (2014) studied a convection-permitting en-
semble without stochastic physics and found that determin-
istic forecast skill was poorer during weak than during strong
forcing conditions. They developed a convective adjustment
timescale to measure the strength of the forcing conditions.
This quantity can be calculated from model variables and
could therefore be used in advance to determine how pre-
dictable the convective response will be for a given forecast.
This could potentially be useful in an adaptive ensemble sys-
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tem using two convection parameterizations (see, for exam-
ple, Marsigli et al., 2005), one of which is stochastic and is
better suited to providing an estimate of the uncertainty in
weaker forcing cases.

Although the Plant–Craig scheme clearly produces im-
proved probabilistic forecasts, it is not certain whether this is
due to its stochasticity, due to different underlying assump-
tions between it and the standard convection scheme, or sim-
ply due to the decrease in convective fraction seen in this
implementation. In order to make a clean distinction, fur-
ther studies could be performed in which the performance
of the Plant–Craig scheme is compared against its own non-
stochastic counterpart, which can be constructed by using
the full cloud distribution and appropriately normalizing, in-
stead of sampling randomly from it (cf. Keane et al., 2014).
Nonetheless, the results from applying the recently devel-
oped ensemble added value metric do provide some relevant
information for this question. This metric aims to assess the
quality of the ensemble in relation to the underlying mem-
ber forecasts, and the Plant–Craig scheme has been shown
to increase it. This indicates that the stochastic aspect of the
scheme can increase the value added to a forecast by using
an ensemble, since other aspects of the scheme (including
the convective fraction) would be expected (broadly) to af-
fect the performance of the ensemble as a whole and of the
individual members equally.

The results of this study justify further work to investi-
gate the impact of the Plant–Craig scheme on ensemble fore-
casts. Since the version of MOGREPS used in this study
has been superseded, it is not feasible to carry out a more
detailed investigation beyond the proof of concept carried
out in the present study. Interestingly, the resolution used in
this study is now becoming more widely used in global en-
semble forecasting, and so future work could involve imple-
menting the scheme in a global NWP system, for example
the global version of MOGREPS. This would enable assess-
ments to be made as to whether the scheme provides benefits
for the representation of tropical convection, in addition to
those aspects of mid-latitude convection that were demon-
strated here.

Code and/or data availability

The source code for the Plant–Craig parameterization, as it
was used in this study, can be made available on request, by
contacting r.s.plant@reading.ac.uk.
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