115 research outputs found
Identification of quality markers of Xiaojin Pills using a combination of high-performance liquid chromatographtandem mass spectrometry and multivariate analysis
Purpose: To establish an appropriate quality control method for Xiaojin pills using high-performance liquid chromatograph-tandem mass spectrometry combined with multivariate analysis.Methods: High-performance liquid chromatograph-tandem mass spectrometry was established to detect and quantify 13 chemical components of Xiaojin Pills. In order to evaluate the quality difference between diverse specimens of Xiaojin Pills, several multivariate statistical techniques were applied to analyze the dissimilarity between different batches of samples, including principal composition analysis method and clustering methodology.Results: Five chemical components were identified as primary quality markers, which can be used to accurately distinguish various samples and command the quality of Xiaojin Pills.Conclusion: The results afford a professionally scientific basis for the quality monitoring of Xiaojin Pills and also furnishes reasonable ideas and suggestions for the quality control of other traditional drugs.Keywords: Xiaojin Pills, HPLC-MS/MS, Quality control, Chemometrics, Quality marker
Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers
Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP)/polylactide-block-monomethoxy(polyethyleneglycol) hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL) function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP) porous nanospheres is achieved (126.7 m2/g). PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time (ln(t)). The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated
Effect of Puerarin Regulated mTOR Signaling Pathway in Experimental Liver Injury
It is known that excessive hepatocellular apoptosis is a typical characteristic of hepatic disease, and is regulated by the mammalian target of rapamycin (mTOR) signaling pathway. As the main active component of Kudzu (Pueraria lobata) roots, which is frequently used to treat hepatic diseases, Puerarin (Pue) has been reported to alleviate and protect against hepatic injury. However, it is unclear whether Pue can inhibit mTOR signaling to prevent excessive apoptosis in the treatment of hepatic diseases. In the present study, Pue effectively ameliorated pathological injury of the liver, decreased serum enzyme (ALT, AST, γ-GT, AKP, DBIL, and TBIL) levels, regulated the balance between pro-inflammatory (TNF-α, IL-1β, IL-4, IL-6, and TGF-β1) and anti-inflammatory cytokines (IL-10), restored the cell cycle and inhibited hepatocellular apoptosis and caspase-3 expression in rats with liver injury induced by 2-AAF/PH. Pue inhibited p-mTOR, p-AKT and Raptor activity, and increased Rictor expression in the liver tissues of rats with experimental liver injury. These results indicated that Pue effectively regulated the activation of mTOR signaling pathway in the therapeutic and prophylactic process of Pue on experimental liver injury
Sishen Wan® Ameliorated Trinitrobenzene-Sulfonic-Acid-Induced Chronic Colitis via NEMO/NLK Signaling Pathway
The nuclear factor (NF)-κB signaling pathway plays an important role in the initialization and development phase of inflammatory injuries, including inflammatory bowel disease (IBD). Sishen Wan (SSW) is a classic Chinese patent medicine listed in the Chinese Pharmacopoeia, which is usually used to treat chronic colitis; however, it is unclear whether SSW can treat IBD via the NF-κB signaling pathway. In the present study, the therapeutic effect of SSW was demonstrated by the decreased index of colonic weight, macroscopic and microscopic score, and pathological observation in chronic colitis induced by trinitrobenzene sulfonic acid. In colonic mucosa of rats with chronic colitis, SSW reduced the levels of calprotectin and eliminated oxidative lesions; downregulated expression of interferon-γ, interleukin (IL)-1β and IL-17; increased expression of IL-4; and suppressed expression of NF-κB p65, and NF-κB essential modulator (NEMO)-like kinase (NLK). Furthermore, SSW inhibited ubiquitinated NEMO, ubiquitin-activated enzyme, and E2i activation, and phosphorylation of downstream proteins (cylindromatosis protein, transforming growth factor-β-activated kinase and P38). These results show that the therapeutic effects of SSW in chronic colitis were mediated by inhibiting the NEMO/NLK signaling pathway to suppress NF-κB activation
Association Between SLC30A8 rs13266634 Polymorphism and Risk of T2DM and IGR in Chinese Population: A Systematic Review and Meta-Analysis
Introduction: Published data regarding the association between solute carrier family 30, member 8 (SLC30A8) rs13266634 polymorphism and type 2 diabetes mellitus (T2DM) and impaired glucose regulation (IGR) risks in Chinese population are in-consistent. The purpose of this meta-analysis was to evaluate the association between SLC30A8 rs13266634 and T2DM/IGR in a Chinese population.Material and Methods: Three English (PubMed, Embase, and Web of Science) and three Chinese databases (Wanfang, CNKI, and CBMD database) were used for searching articles from January 2005 to January 2018. Odds ratio (OR) and 95% confidence interval (95%CI) were calculated with the random-effect model. Trial sequential analysis was also utilized.Results: Twenty-eight case-control studies with 25,912 cases and 26,975 controls were included for SLC30A8 and T2DM. Pooled risk allele C frequency for rs13266634 was 60.6% (95%CI: 59.2–62.0%) in the T2DM group and 54.8% (95%CI: 53.2–56.4%) in the control group which had estimated OR of 1.23 (95%CI: 1.17–1.28). Individuals who carried major homozygous CC and heterozygous CT genotype were at 1.51 and 1.23 times higher risk of T2DM, respectively, than those carrying minor homozygous TT. The most appropriate genetic analysis model was the co-dominant model based on comparison of OR1, OR2 and OR3. Five articles that involved 4,627 cases and 6,166 controls were included for SLC30A8 and IGR. However, no association was found between SLC30A8 rs13266634 and IGR (C vs. T, OR = 1.13, 95%CI: 0.98–1.30, p = 0.082). TSA revealed that the pooled sample sizes of T2DM exceeded the estimated required information size but not the IGR.Conclusion: The present meta-analysis demonstrated that SLC30A8 rs13266634 was a potential risk factor for T2DM, and more studies should be performed to confirm the association between rs13266634 polymorphism and IGR
A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III
We established a method on measuring the \dzdzb mixing parameter for
BESIII experiment at the BEPCII collider. In this method, the doubly
tagged events, with one decays to
CP-eigenstates and the other decays semileptonically, are used to
reconstruct the signals. Since this analysis requires good separation,
a likelihood approach, which combines the , time of flight and the
electromagnetic shower detectors information, is used for particle
identification. We estimate the sensitivity of the measurement of to be
0.007 based on a fully simulated MC sample.Comment: 6 pages, 7 figure
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Recommended from our members
Joint analysis of three genome-wide association studies of esophageal squamous cell carcinoma in Chinese populations
We conducted a joint (pooled) analysis of three genome-wide association studies (GWAS) 1-3 of esophageal squamous cell carcinoma (ESCC) in ethnic Chinese (5,337 ESCC cases and 5,787 controls) with 9,654 ESCC cases and 10,058 controls for follow-up. In a logistic regression model adjusted for age, sex, study, and two eigenvectors, two new loci achieved genome-wide significance, marked by rs7447927 at 5q31.2 (per-allele odds ratio (OR) = 0.85, 95% CI 0.82-0.88; P=7.72x10−20) and rs1642764 at 17p13.1 (per-allele OR= 0.88, 95% CI 0.85-0.91; P=3.10x10−13). rs7447927 is a synonymous single nucleotide polymorphism (SNP) in TMEM173 and rs1642764 is an intronic SNP in ATP1B2, near TP53. Furthermore, a locus in the HLA class II region at 6p21.32 (rs35597309) achieved genome-wide significance in the two populations at highest risk for ESSC (OR=1.33, 95% CI 1.22-1.46; P=1.99x10−10). Our joint analysis identified new ESCC susceptibility loci overall as well as a new locus unique to the ESCC high risk Taihang Mountain region
Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials
There has been a large increase in the number of papers published that are relevant to this review over this review period. The growth in popularity of LIBS is rapid, with applications being published for most sample types. This is undoubtedly because of its capability to analyse in situ on a production line (hence saving time and money) and its minimally destructive nature meaning that both forensic and cultural heritage samples may be analysed. It also has a standoff analysis capability meaning that hazardous materials, e.g. explosives or nuclear materials, may be analysed from a safe distance. The use of mathematical algorithms in conjunction with LIBS to enable improved accuracy has proved a popular area of research. This is especially true for ferrous and non-ferrous samples. Similarly, chemometric techniques have been used with LIBS to aid in the sorting of polymers and other materials. An increase in the number of papers in the subject area of alternative fuels was noted. This was at the expense of papers describing methods for the analysis of crude oils. For nanomaterials, previous years have seen a huge number of single particle and field flow fractionation characterisations. Although several such papers are still being published, the focus seems to be switching to applications of the nanoparticles and the mechanistic aspects of how they retain or bind with other analytes. This is the latest review covering the topic of advances in the analysis of metals, chemicals and materials. It follows on from last year's review1-6 and is part of the Atomic Spectrometry Updates series
- …