19 research outputs found

    Wavelength-shifter coated polystyrene as an easy-to-build and low-cost plastic scintillator detector

    Full text link
    We studied the light yield of a pure polystyrene slide coated with wavelength-shifter molecules, coupled to a photomultiplier, using beta particles from a 90-Sr source, as a possible easy-to-build, low-cost plastic scintillator detector. Comparison measurements were performed with an uncoated polystyrene slide as well as with uncoated and coated PMMA slides, the latter which can only produce Cherenkov light when being traversed by charged particles. The results with the single (double) coated polystyrene slides show about 4.9 (6.3) times higher detected photon yield compared to the uncoated slide. For comparison, the light yield of a polystyrene-based extruded plastic scintillator material doped with PTP and POPOP was measured as well. The absolute detected light yield motivates future studies for developing easy-to-build, low-cost polystyrene-based plastic scintillator detectors.Comment: 20 pages, 13 figure

    Towards effective indirect radioisotope energy converters with bright and radiation hard scintillators of (Gd,Y)3Al2Ga3O12 family

    Full text link
    Ceramics of quaternary garnets (Gd,Y)3Al2Ga3O12 doped with Ce, Tb have been fabricated and evaluated as prospective materials for indirect energy converters of α-and β-voltaic. Samples were characterized at excitation with an X-ray source and an intense 150 keV electron beam and showed good temperature stability of their emission and tolerance to irradiation. The role of X-rays accompanied the α-particle emitting in the increase of the conversion efficiency is clarified. The garnet-type structure of the matrix in the developed materials allows the production of quality crystalline mass with a light yield exceeding that of the commonly used YAG: Ce scintillator by a factor of two times. © 2022 Korean Nuclear SocietyMinistry of Education and Science of the Russian Federation, Minobrnauka: 075-15-2021-1353, FEUZ-2020-0060; Ministerstwo Edukacji i Nauki, MNiSW: 075-11-2021-070; Ministry of Science and Higher Education of the Russian FederationAuthors with affiliations b, d, e and f acknowledge support from Russian Ministry of Science and Education grant No. 075-15-2021-1353 . The scientific equipment provided by shared research facilities “Scientific Research Analytical Center of National Research Center “Kurchatov Institute” – IREA” was used, with financial support of Russian Federation, represented by the Ministry of Science and Higher Education, agreement No. 075-11-2021-070 dated August 19, 2021. The work was partially supported by the Ministry of Science and Higher Education of the Russian Federation (through the basic part of the government mandate, project No. FEUZ-2020-0060 ) (authors with affiliation “c”).Authors with affiliations b, d, e and f acknowledge support from Russian Ministry of Science and Education grant No. 075-15-2021-1353. The scientific equipment provided by shared research facilities “Scientific Research Analytical Center of National Research Center “Kurchatov Institute” – IREA” was used, with financial support of Russian Federation, represented by the Ministry of Science and Higher Education, agreement No. 075-11-2021-070 dated August 19, 2021. The work was partially supported by the Ministry of Science and Higher Education of the Russian Federation (through the basic part of the government mandate, project No. FEUZ-2020-0060) (authors with affiliation “c”)

    Feasibility studies for the measurement of time-like proton electromagnetic form factors from p¯ p→ μ+μ- at P ¯ ANDA at FAIR

    Get PDF
    This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, | GE| and | GM| , using the p¯ p→ μ+μ- reaction at P ¯ ANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at P ¯ ANDA , using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is p¯ p→ π+π-, due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distributions of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented

    PANDA Phase One - PANDA collaboration

    Get PDF
    The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of hadron-, nuclear- and atomic physics experiments. The future antiProton ANnihilations at DArmstadt (PANDA or P¯ANDA) experiment at FAIR will offer a broad physics programme, covering different aspects of the strong interaction. Understanding the latter in the non-perturbative regime remains one of the greatest challenges in contemporary physics. The antiproton–nucleon interaction studied with PANDA provides crucial tests in this area. Furthermore, the high-intensity, low-energy domain of PANDA allows for searches for physics beyond the Standard Model, e.g. through high precision symmetry tests. This paper takes into account a staged approach for the detector setup and for the delivered luminosity from the accelerator. The available detector setup at the time of the delivery of the first antiproton beams in the HESR storage ring is referred to as the Phase One setup. The physics programme that is achievable during Phase One is outlined in this paper

    A simulation study of the time measurement accuracy for the SPACAL type ECAL Module for LHCb Upgrade phase 2

    No full text
    The Spaghetti type Calorimeter (SPACAL) with fibers parallel to the beam direction is considered as an option for the inner part of the future LHCb Electromagnetic Calorimeter (ECAL) for the Upgrade Phase 2 [1]. In this work a simulation study of the time measurement precision has been performed for the electron and photon beams with energies of 1, 2, 4, 5 and 10 GeV

    Multipurpose Ce-doped Ba-Gd silica glass scintillator for radiation measurements

    No full text
    A new inorganic scintillation material based on Ba-Gd silica glass doped with cerium (BGS) is fabricated and studied. With the highest light yield among heavy glasses at the level of 2500 ph/MeV and fast scintillation response, the new scintillator ensures a good coincidence time resolution of < 230 ps FWHM for 511 keV  γ -quanta from a 22^{22}Na source and SiPM readout. In addition to good performance in  γ -quanta detection, the material demonstrates capability for efficient detection of low-energetic​ neutrons. The scintillator is produced by exploiting the standard industrial glass technology, which allows for an unlimited scaling up the conversion of raw material into a high-quality scintillator at a high rate. The glass can be casted in application-specific molds, so minimizing the material losses. The presented glass scintillator has potential for further improvement of its light output and scintillation response time

    The potential of Λ\Lambda and Ξ\Xi^- studies with PANDA at FAIR

    No full text
    International audienceThe antiproton experiment PANDA at FAIR is designed to bring hadron physics to a new level in terms of scope, precision and accuracy. In this work, its unique capability for studies of hyperons is outlined. We discuss ground-state hyperons as diagnostic tools to study non-perturbative aspects of the strong interaction, and fundamental symmetries. New simulation studies have been carried out for two benchmark hyperon-antihyperon production channels: pˉpΛˉΛ{\bar{p}}p \rightarrow {\bar{\varLambda }}\varLambda and pˉpΞˉ+Ξ{\bar{p}}p \rightarrow {\bar{\varXi }}^+\varXi ^-. The results, presented in detail in this paper, show that hyperon-antihyperon pairs from these reactions can be exclusively reconstructed with high efficiency and very low background contamination. In addition, the polarisation and spin correlations have been studied, exploiting the weak, self-analysing decay of hyperons and antihyperons. Two independent approaches to the finite efficiency have been applied and evaluated: one standard multidimensional efficiency correction approach, and one efficiency independent approach. The applicability of the latter was thoroughly evaluated for all channels, beam momenta and observables. The standard method yields good results in all cases, and shows that spin observables can be studied with high precision and accuracy already in the first phase of data taking with PANDA

    Study of Excited Ξ\Xi Baryons with the PANDA Detector

    No full text
    The study of baryon excitation spectra provides insight into the inner structure of baryons. So far, most of the world-wide efforts have been directed towards NN^* and Δ\Delta spectroscopy. Nevertheless, the study of the double and triple strange baryon spectrum provides independent information to the NN^* and Δ\Delta spectra. The future antiproton experiment PANDA will provide direct access to final states containing a ΞˉΞ\bar{\Xi}\Xi pair, for which production cross sections up to μ\mub are expected in pˉp\bar{p}p reactions. With a luminosity of L=1031cm2s1L=10^{31}\,cm^{-2}s^{-1} in the first phase of the experiment, the expected cross sections correspond to a production rate of 106\sim 10^6 events//day. With a nearly 4π4\pi detector acceptance, PANDA will thus be a hyperon factory. In this study, reactions of the type pˉpΞˉ+Ξ\bar{p}p\rightarrow \bar{\Xi}^+ \Xi^{*-} as well as pˉpΞˉ+Ξ\bar{p}p\rightarrow \bar{\Xi}^{*+} \Xi^{-} with various decay modes are investigated. For the exclusive reconstruction of the signal events a full decay tree fit is used, resulting in reconstruction efficiencies between 3%3\,\% and 5%5\,\%. This allows high statistics data to be collected within a few weeks of data taking
    corecore