58 research outputs found

    Multi-sectoral impact assessment of an extreme African dust episode in the Eastern Mediterranean in March 2018

    Get PDF
    In late March 2018, a large part of the Eastern Mediterranean experienced an extraordinary episode of African dust, one of the most intense in recent years, here referred to as the “Minoan Red” event. The episode mainly affected the Greek island of Crete, where the highest aerosol concentrations over the past 15 yeas were recorded, although impacts were also felt well beyond this core area. Our study fills a gap in dust research by assessing the multi-sectoral impacts of sand and dust storms and their socioeconomic implications. Specifically, we provide a multi-sectoral impact assessment of Crete during the occurrence of this exceptional African dust event. During the day of the occurrence of the maximum dust concentration in Crete, i.e. March 22nd, 2018, we identified impacts on meteorological conditions, agriculture, transport, energy, society (including closing of schools and cancellation of social events), and emergency response systems. As a result, the event led to a 3-fold increase in daily emergency responses compare to previous days associated with urban emergencies and wildfires, a 3.5-fold increase in hospital visits and admissions for Chronic Obstructive Pulmonary Disease (COPD) exacerbations and dyspnoea, a reduction of visibility causing aircraft traffic disruptions (eleven cancellations and seven delays), and a reduction of solar energy production. We estimate the cost of direct and indirect effects of the dust episode, considering the most affected socio-economic sectors (e.g. civil protection, aviation, health and solar energy production), to be between 3.4 and 3.8 million EUR for Crete. Since such desert dust transport episodes are natural, meteorology-driven and thus to a large extent unavoidable, we argue that the efficiency of actions to mitigate dust impacts depends on the accuracy of operational dust forecasting and the implementation of relevant early warning systems for social awareness.The authors gratefully acknowledge the COST Association for funding the COST Action inDust (CA16202) as well as the WMO Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS) and the ERA4CS DustClim and the AXA Research Fund for funding the AXA Chair on Sand and Dust Storms (hosted by the Barcelona Supercomputing Center). We thank the scientific team of the PROTEAS CSP facility for the feedback provided and T. Bojic and R. Burbidge for facilitating the access to the EUROCONTROL archive. We thank the scientific team of the PROTEAS CSP facility for providing DNI data for this case study. Thanks are due to FCT/MCTES for the financial support to CESAM (UIDP/50017/2020+UIDB/50017/2020) through national funds, and also to the Icelandic Research Fund for the grant no. 207057-051. Authors S. Kazadzis and P. Kosmopoulos would like to acknowledge the European Commission project EuroGEO e-shape (grant agreement No 820852). Also, International Cooperative for Aerosol Prediction (ICAP) and NASA mission researchers are gratefully for providing aerosol data for this study. Aurelio Tobias was supported by MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S). S. Kutuzov acknowledges the Megagrant project (agreement No. 075-15-2021-599, 8.06.2021).Peer Reviewed"Article signat per 34 autors/es: Alexandra Monteiro, Sara Basart, Stelios Kazadzis, Athanasios Votzis, Antonis Gkikas, Sophie Vandenbussche, Aurelio Tobias, Carla Gama, Carlos Pérez García Pando, Enric Terradellas, George Notas, Nick Middleton, Jonilda Kushta, Vassilis Amiridis, Kostas Lagouvardos, Panagiotis Kosmopoulos, Vasiliki Kotroni, Maria Kanakidou, Nikos Mihalopoulos, Nikos Kalivitis, Pavla Dagsson-Waldhauserová, Hesham El-Askary, Klaus Sievers, T. Giannaros, Lucia Mona, Marcus Hirt, Paul Skomorowski, Timo H.Virtanen, Theodoros Christoudias,, Biagio Di Mauro, Serena Trippetta, Stanislav Kutuzov, Outi Meinander, Slobodan Nickovic"Postprint (author's final draft

    Earth-observation-based estimation and forecasting of particulate matter impact on solar energy in Egypt

    Get PDF
    This study estimates the impact of dust aerosols on surface solar radiation and solar energy in Egypt based on Earth Observation (EO) related techniques. For this purpose, we exploited the synergy of monthly mean and daily post processed satellite remote sensing observations from the MODerate resolution Imaging Spectroradiometer (MODIS), radiative transfer model (RTM) simulations utilizing machine learning, in conjunction with 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). As cloudy conditions in this region are rare, aerosols in particular dust, are the most common sources of solar irradiance attenuation, causing performance issues in the photovoltaic (PV) and concentrated solar power (CSP) plant installations. The proposed EO-based methodology is based on the solar energy nowcasting system (SENSE) that quantifies the impact of aerosol and dust on solar energy potential by using the aerosol optical depth (AOD) in terms of climatological values and day-to-day monitoring and forecasting variability from MODIS and CAMS, respectively. The forecast accuracy was evaluated at various locations in Egypt with substantial PV and CSP capacity installed and found to be within 5–12% of that obtained from the satellite observations, highlighting the ability to use such modelling approaches for solar energy management and planning (M&P). Particulate matter resulted in attenuation by up to 64–107 kWh/m2 for global horizontal irradiance (GHI) and 192–329 kWh/m2 for direct normal irradiance (DNI) annually. This energy reduction is climatologically distributed between 0.7% and 12.9% in GHI and 2.9% to 41% in DNI with the maximum values observed in spring following the frequent dust activity of Khamaseen. Under extreme dust conditions the AOD is able to exceed 3.5 resulting in daily energy losses of more than 4 kWh/m2 for a 10 MW system. Such reductions are able to cause financial losses that exceed the daily revenue values. This work aims to show EO capabilities and techniques to be incorporated and utilized in solar energy studies and applications in sun-privileged locations with permanent aerosol sources such as Egypt

    Quantification of the dust optical depth across spatiotemporal scales with the MIDAS global dataset (2003–2017)

    Get PDF
    Quantifying the dust optical depth (DOD) and its uncertainty across spatiotemporal scales is key to understanding and constraining the dust cycle and its interactions with the Earth System. This study quantifies the DOD along with its monthly and year-to-year variability between 2003 and 2017 at global and regional levels based on the MIDAS (ModIs Dust AeroSol) dataset, which combines Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua retrievals and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), reanalysis products. We also describe the annual and seasonal geographical distributions of DOD across the main dust source regions and transport pathways. MIDAS provides columnar mid-visible (550 nm) DOD at fine spatial resolution (), expanding the current observational capabilities for monitoring the highly variable spatiotemporal features of the dust burden. We obtain a global DOD of 0.032±0.003 – approximately a quarter (23.4 %±2.4 %) of the global aerosol optical depth (AOD) – with about 1 order of magnitude more DOD in the Northern Hemisphere (0.056±0.004; 31.8 %±2.7 %) than in the Southern Hemisphere (0.008±0.001; 8.2 %±1.1 %) and about 3.5 times more DOD over land (0.070±0.005) than over ocean (0.019±0.002). The Northern Hemisphere monthly DOD is highly correlated with the corresponding monthly AOD (R2=0.94) and contributes 20 % to 48 % of it, both indicating a dominant dust contribution. In contrast, the contribution of dust to the monthly AOD does not exceed 17 % in the Southern Hemisphere, although the uncertainty in this region is larger. Among the major dust sources of the planet, the maximum DODs (∼1.2) are recorded in the Bodélé Depression of the northern Lake Chad Basin, whereas moderate-to-high intensities are encountered in the Western Sahara (boreal summer), along the eastern parts of the Middle East (boreal summer) and in the Taklamakan Desert (spring). Over oceans, major long-range dust transport is observed primarily along the tropical Atlantic (intensified during boreal summer) and secondarily in the North Pacific (intensified during boreal spring). Our calculated global and regional averages and associated uncertainties are consistent with some but not all recent observation-based studies. Our work provides a simple yet flexible method to estimate consistent uncertainties across spatiotemporal scales, which will enhance the use of the MIDAS dataset in a variety of future studies.Antonis Gkikas acknowledges support by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the 2nd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers (ATLANTAS, project number 544), as well as support from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Actions (grant no. 749461; DUST-GLASS). Vassilis Amiridis acknowledges support from the European Research Council (grant no. 725698; D-TECT). Eleni Marinou was funded by a DLR VO-R young investigator group and the Deutscher Akademischer Austauschdienst (grant no. 57370121). Jasper F. Kok acknowledges support from National Science Foundation (NSF) grant 1552519. Carlos Pérez García-Pando acknowledges support from the European Research Council (grant no. 773051; FRAGMENT); the AXA Research Fund; and the Spanish Ministry of Science, Innovation and Universities (grant nos. RYC-2015-18690 and CGL2017-88911-R). The authors acknowledge support from the DustClim project as part of ERA4CS, an ERA-NET project initiated by JPI Climate and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), and ANR (FR), with cofunding by the European Union (grant no. 690462). PRACE (Partnership for Advanced Computing in Europe) and RES (Red Española de Supercomputación) are acknowledged for awarding access to the MareNostrum Supercomputer in the Barcelona Supercomputing Center. We acknowledge support of this work by the PANhellenic infrastructure for Atmospheric Composition and climatE chAnge (PANACEA) project (grant no. MIS 5021516), which is implemented under the Horizon 2020 Action of Reinforcement of the Research and Innovation Infrastructure, funded by the Operational Programme Competitiveness, Entrepreneurship, and Innovation (NSRF 2014–2020) and cofinanced by Greece and the European Union (under the European Regional Development Fund). NOA members acknowledge support from the Stavros Niarchos Foundation (SNF). The authors acknowledge support by the COST Action InDust (grant no. CA16202), supported by COST (European Cooperation in Science and Technology). The authors would like to thank Andrew Mark Sayer for his valuable and constructive comments. The authors would like also to thank Thanasis Georgiou for developing the ftp server on which the MIDAS dataset is stored.Peer ReviewedPostprint (published version

    Record high solar irradiance in Western Europe during first COVID-19 lockdown largely due to unusual weather

    Full text link
    Spring 2020 broke sunshine duration records across western Europe. The Netherlands recorded the highest surface irradiance since 1928, exceeding the previous extreme of 2011 by 13 %, and the diffuse fraction of the irradiance measured a record low percentage (38 %). The coinciding irradiance extreme and a reduction in anthropogenic pollution due to COVID-19 measures triggered the hypothesis that cleaner-than-usual air contributed to the record. Based on analyses of ground-based and satellite observations and experiments with a radiative transfer model, we estimate a 1.3 % (2.3 W m2^{-2}) increase in surface irradiance with respect to the 2010-2019 mean due to a low median aerosol optical depth, and a 17.6 % (30.7 W m2^{-2}) increase due to several exceptionally dry days and a very low cloud fraction overall. Our analyses show that the reduced aerosols and contrails due to the COVID-19 measures are far less important in the irradiance record than the dry and particularly cloud-free weather.Comment: 21 pages, 12 figures, submitted to Communications Earth and Environmen

    Effects of mixing state on optical and radiative properties of black carbon in the European Arctic

    Get PDF
    Atmospheric aging promotes internal mixing of black carbon (BC), leading to an enhancement of light absorption and radiative forcing. The relationship between BC mixing state and consequent absorption enhancement was never estimated for BC found in the Arctic region. In the present work, we aim to quantify the absorption enhancement and its impact on radiative forcing as a function of microphysical properties and mixing state of BC observed in situ at the Zeppelin Arctic station (78 degrees N) in the spring of 2012 during the CLIMSLIP (Climate impacts of short-lived pollutants in the polar region) project. Single-particle soot photometer (SP2) measurements showed a mean mass concentration of refractory black carbon (rBC) of 39 ngm(-3), while the rBC mass size distribution was of lognormal shape, peaking at an rBC mass-equivalent diameter (D-rBC) of around 240 nm. On average, the number fraction of particles containing a BC core with D-rBC > 80 nm was less than 5% in the size range (overall optical particle diameter) from 150 to 500 nm. The BC cores were internally mixed with other particulate matter. The median coating thickness of BC cores with 220 nm <D-rBC <260 nm was 52 nm, resulting in a core-shell diameter ratio of 1.4, assuming a coated sphere morphology. Combining the aerosol absorption coefficient observed with an Aethalometer and the rBC mass concentration from the SP2, a mass absorption cross section (MAC) of 9.8 m(2) g(-1) was inferred at a wavelength of 550 nm. Consistent with direct observation, a similar MAC value (8.4m(2) g(-1) at 550 nm) was obtained indirectly by using Mie theory and assuming a coated-sphere morphology with the BC mixing state constrained from the SP2 measurements. According to these calculations, the lensing effect is estimated to cause a 54% enhancement of the MAC compared to that of bare BC particles with equal BC core size distribution. Finally, the ARTDECO radiative transfer model was used to estimate the sensitivity of the radiative balance to changes in light absorption by BC as a result of a varying degree of internal mixing at constant total BC mass. The clear-sky noontime aerosol radiative forcing over a surface with an assumed wavelength-dependent albedo of 0.76-0.89 decreased, when ignoring the absorption enhancement, by -0.12 Wm(-2) compared to the base case scenario, which was constrained with mean observed aerosol properties for the Zeppelin site in Arctic spring. The exact magnitude of this forcing difference scales with environmental conditions such as the aerosol optical depth, solar zenith angle and surface albedo. Nevertheless, our investigation suggests that the absorption enhancement due to internal mixing of BC, which is a systematic effect, should be considered for quantifying the aerosol radiative forcing in the Arctic region.Peer reviewe

    Análisis de la trazabilidad en los valores del AOD obtenidos a partir de las medidas de las redes AERONET-CIMEL y GAW-PFR durante el período 2005-2015 en el Observatorio Atmosférico de Izaña

    Get PDF
    Las dos grandes redes mundiales de fotómetros terrestres para la medida de las propiedades ópticas del aerosol en la columna atmosférica con las AERONET-CIMEL y GAW-PFR. Dado que ambas son diferentes en cuanto a tipos, características, número y localización de fotómetros utilizados, así como a metodologías, procedimientos de calibración y algoritmos de cálculo empleados en la evaluación de datos, resulta conveniente comparar los productos similares suministrados por las dos redes y así determinar en qué medida son homogéneos o equivalentes. El objetivo de este trabajo es analizar las diferencias que existen en una propiedad óptica, fundamental para conocer y caracterizar el contenido en columna de los aerosoles atmosféricos, que es el espesor óptico de aerosoles (AOD) obtenido para diferentes longitudes de onda por cada una de las dos redes. El análisis se estructura en tres capítulos. En el capítulo 1, se expone el concepto de trazabilidad y se explica en qué se basa la definición y cuáles son sus implicaciones. Posteriormente, se aplica a las series de AOD y se muestran los resultados. En el capítulo 2, se analizan las principales causas que pueden dar lugar a diferencias no trazables de AOD para cada una de las parejas de series comparadas en cada longitud de onda. Finalmente, el capítulo 3, recoge las conclusiones y recomendaciones para mejorar, en la medida de lo posible, la trazabilidad y la homogeneidad de estos productos.Los autores agradecen a PMOD/WRC y AERONET los datos proporcionados y utilizados en este trabajo así como las calibraciones de los fotómetros Cimel por parte de AERONET-Europe TNA en el marco del proyecto europeo FP7 ACTRIS nº262254. Este trabajo forma parte de las actividades del “WMO-CIMO Testbed for Aerosols and Water Vapor Remote Sensing Instruments (Izana, Spain)”

    Linear polarization signatures of atmospheric dust with the SolPol direct-sun polarimeter

    Get PDF
    Dust particles in lofted atmospheric layers may present a preferential orientation, which could be detected from the resulting dichroic extinction of the transmitted sunlight. The first indications were provided relatively recently on atmospheric dust layers using passive polarimetry, when astronomical starlight observations of known polarization were found to exhibit an excess in linear polarization, during desert dust events that reached the observational site. We revisit the previous observational methodology by targeting dichroic extinction of transmitted sunlight through extensive atmospheric dust layers utilizing a direct-sun polarimeter, which is capable to continuously monitor the polarization of elevated aerosol layers. In this study, we present the unique observations from the Solar Polarimeter (SolPol) for different periods within 2 years, when the instrument was installed in the remote monitoring station of PANGEA – the PANhellenic GEophysical observatory of Antikythera – in Greece. SolPol records polarization, providing all four Stokes parameters, at a default wavelength band centred at 550 nm with a detection limit of 10−7. We, overall, report on detected increasing trends of linear polarization, reaching up to 700 parts per million, when the instrument is targeting away from its zenith and direct sunlight propagates through dust concentrations over the observatory. This distinct behaviour is absent on measurements we acquire on days with lack of dust particle concentrations and in general of low aerosol content. Moreover, we investigate the dependence of the degree of linear polarization on the layers' optical depth under various dust loads and solar zenith angles and attempt to interpret these observations as an indication of dust particles being preferentially aligned in the Earth's atmosphere

    Performance of the FMI cosine error correction method for the Brewer spectral UV measurements

    Get PDF
    Non-ideal angular response of a spectroradiometer is a well-known error source of spectral UV measurements and for that reason instrument specific cosine error correction is applied. In this paper, the performance of the cosine error correction method of Brewer spectral UV measurements in use at the Finnish Meteorological Institute (FMI) is studied. Ideally, the correction depends on the actual sky radiation distribution, which can change even during one spectral scan due to rapid changes in cloudiness. The FMI method has been developed to take into account the changes in the ratio of direct to diffuse sky radiation and it derives a correction coefficient for each measured wavelength. Measurements of five Brewers were corrected for the cosine error and the results were compared to the reference travelling spectroradiometer (QASUME). Measurements were performed during the RBCC-E (Regional Brewer Calibration Center – Europe) X Campaign held at El Arenosillo, Huelva (37∘ N, 7∘ W), Spain, in 2015. In addition, results of site audits of FMI's Brewers in Sodankylä (67∘ N, 27∘ E) and Jokioinen (61∘ N, 24∘ E) during 2002–2014 were studied. The results show that the spectral cosine error correction varied between 4 and 14 %. After that the correction was applied to Brewer UV spectra the relative differences between the QASUME and the Brewer diminished even by 10 %. The study confirms that the method, originally developed for measurements at high latitudes, can be used at mid-latitudes as well. The method is applicable to other Brewers as far as the required input parameters, i.e. total ozone, aerosol information, albedo, instrument specific angular response and slit function are available.This article is based upon work from the COST Action ES1207 “A European Brewer Network (EUBREWNET)”, supported by COST (European Cooperation in Science and Technology). This study was partially supported by the research projects CGL2014-56255-C2-1-R and CGL2014-56255-C2-2-R granted by the Ministerio de Economa y Competitividad from Spain

    Spectral aerosol optical depth from SI-traceable spectral solar irradiance measurements

    Get PDF
    Spectroradiometric measurements of direct solar irradiance traceable to the SI were performed by three spectroradiometer systems during a 3-week campaign in September 2022 at the Izaña Atmospheric Observatory (IZO) located on the island of Tenerife, Canary Islands, Spain. The spectroradiometers provided direct spectral irradiance measurements in the spectral ranges 300 to 550 nm (QASUME), 550 to 1700 nm (QASUME-IR), 300 to 2150 nm (BiTec Sensor, BTS), and 316 to 1030 nm (Precision Solar Spectroradiometer, PSR), with relative standard uncertainties of 0.7 %, 0.9 %, and 1 % for QASUME/QASUME-IR, the PSR, and the BTS respectively. The calibration of QASUME and QASUME-IR was validated prior to this campaign at Physikalisch-Technische Bundesanstalt (PTB) by measuring the spectral irradiance from two spectral irradiance sources, the high-temperature blackbody BB3200pg as a national primary standard and the tuneable laser facility TULIP

    Aerosol Optical Depth comparison between GAW-PFR and AERONET-Cimel radiometers from long term (2005–2015) 1-minute synchronous measurements [Discussion paper]

    Get PDF
    A comprehensive comparison of more than 70000 synchronous 1-minute aerosol optical depth (AOD) data from three Global Atmosphere Watch-Precision Filter Radiometer (GAW-PFR) and 15 Aerosol Robotic Network-Cimel (AERONET-Cimel) radiometers was performed for the four nearby wavelengths (380, 440, 500 and 870nm) in the period 2005–2015. The goal of this study is to assess whether, despite the marked differences between both networks and the number of instruments used, their long term AOD data are comparable and consistent. AOD traceability established by the World Meteorological Organization (WMO) consists in determining the percentage of synchronous data within specific limits. If, at least, 95% of the AOD differences of an instrument compared to the WMO standards lie within these limits, both data populations are considered equivalent. The percentage of traceable data is 92.7% (380nm), 95.7% (440nm), 95.8% (500nm) and 98.0% (870nm). When small misalignments in GAW-PFR sun-pointing were fixed (period 2010–2015), the percentage of traceable data increased. The contribution of calibration related aspects to comparison outside the 95% traceability limits is insignificant in all channels, except in 380nm. The simultaneous failure of both cloud screening algorithms might occur only under the presence of cirrus, or altostratus clouds on the top of a dust-laden Saharan air layer. Differences in the calculation of the optical depth contribution due to Rayleigh scattering, and O3 and NO2 absorption have a negligible impact. For AOD >0.1, a non-negligible percentage (≈1.9%) of the AOD data outside the 95% traceability limits at 380nm can be partly assigned to the different field of view of the instruments. The comparison of the Angström exponent (AE) shows that under non-pristine conditions (AOD >0.03 and AE <1) the AE differences remain <0.1. The excellent traceability in this study has been obtained using well calibrated Master instruments.The work was supported by the project “The Global Atmosphere Watch Precision Filter Radiometer (GAW-PFR) Network for Aerosol Optical Depth long term measurements” supported by Bundesamt für Meteorologie und Klimatologie MeteoSchweiz – GCOS Swiss Office. Part of the AERONET-Cimel radiometers have been calibrated at Izaña Observatory by AERONETEUROPE Calibration Service, financed by the European Community specific programs for Integrating Activities: Research Infrastructure Action under the Seventh Framework Programme (FP7/2007-2013), ACTRIS grant agreement No. 262254, and Horizon 2020 Research 25 and Innovation Program, ACTRIS-2 grant agreement No. 654109. This research has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 654109 (ACTRIS-2).The funding by MINECO (CTM2015-66742-R) and Junta de Castilla y León (VA100P17) is also gratefully acknowledge
    corecore