2,868 research outputs found

    Liquid-like behaviour of gold nanowire bridges

    Get PDF
    A combination of Focused Ion Beam (FIB) and Reactive Ion Etch (RIE) was used to fabricate free standing gold nanowire bridges with radii of 30 nm and below. These were subjected to point loading to failure at their mid-points using an Atomic Force Microscope (AFM), providing strength and deformation data. The results demonstrate a dimensionally dependent transition from conventional solid metallic properties to liquid-like behaviour including the unexpected reformation of a fractured bridge. The work reveals mechanical and materials properties of nanowires which could have significant impact on nanofabrication processes and nanotechnology devices such as Nano Electro Mechanical Systems (NEMS)

    Electron spin relaxation of N@C60 in CS2

    Full text link
    We examine the temperature dependence of the relaxation times of the molecules N@C60 and N@C70 (which comprise atomic nitrogen trapped within a carbon cage) in liquid CS2 solution. The results are inconsistent with the fluctuating zero field splitting (ZFS) mechanism, which is commonly invoked to explain electron spin relaxation for S > 1/2 spins in liquid solution, and is the mechanism postulated in the literature for these systems. Instead, we find a clear Arrhenius temperature dependence for N@C60, indicating the spin relaxation is driven primarily by an Orbach process. For the asymmetric N@C70 molecule, which has a permanent non-zero ZFS, we resolve an additional relaxation mechanism caused by the rapid reorientation of its ZFS. We also report the longest coherence time (T2) ever observed for a molecular electron spin, being 0.25 ms at 170K.Comment: 6 pages, 6 figures V2: Updated to published versio

    String amplitudes in arbitrary dimensions

    Full text link
    We calculate gravitational dressed tachyon correlators in non critcal dimensions. The 2D gravity part of our theory is constrained to constant curvature. Then scaling dimensions of gravitational dressed vertex operators are equal to their bare conformal dimensions. Considering the model as d+2 dimensional critical string we calculate poles of generalized Shapiro-Virasoro amplitudes.Comment: 14 page

    Optimal phase estimation in quantum networks

    Full text link
    We address the problem of estimating the phase phi given N copies of the phase rotation u(phi) within an array of quantum operations in finite dimensions. We first consider the special case where the array consists of an arbitrary input state followed by any arrangement of the N phase rotations, and ending with a POVM. We optimise the POVM for a given input state and fixed arrangement. Then we also optimise the input state for some specific cost functions. In all cases, the optimal POVM is equivalent to a quantum Fourier transform in an appropriate basis. Examples and applications are given.Comment: 9 pages, 2 figures; this is an extended version of arXiv:quant-ph/0609160. v2: minor corrections in reference

    Orbital-angular-momentum transfer to optically levitated microparticles in vacuum

    Get PDF
    We demonstrate the transfer of orbital angular momentum to an optically levitated microparticle in vacuum. The microparticle is placed within a Laguerre-Gaussian beam and orbits the annular beam profile with increasing angular velocity as the air drag coefficient is reduced. We explore the particle dynamics as a function of the topological charge of the levitating beam. Our results reveal that there is a fundamental limit to the orbital angular momentum that may be transferred to a trapped particle, dependent upon the beam parameters and inertial forces present.PostprintPeer reviewe

    Evaporation of Sessile Droplets on Slippery Liquid-Infused Porous Surfaces (SLIPS)

    Get PDF
    Over the past decade, the most common approach to creating liquid shedding surfaces has been to amplify the effects of nonwetting surface chemistry, using micro/nanotexturing to create superhydrophobic and superoleophobic surfaces. Recently, an alternative approach using impregnation of micro/nanotextured surfaces with immiscible lubricating liquids to create slippery liquid-infused porous surfaces (SLIPS) has been developed. These types of surfaces open up new opportunities to study the mechanism of evaporation of sessile droplets in zero contact angle hysteresis situations where the contact line is completely mobile. In this study, we fabricated surfaces consisting of square pillars (10–90 μm) of SU-8 photoresist arranged in square lattice patterns with the center-to-center separation between pillars of 100 μm, on which a hydrophobic coating was deposited and the textures impregnated by a lubricating silicone oil. These surfaces showed generally low sliding angles of 1° or less for small droplets of water. Droplet profiles were more complicated than on nonimpregnated surfaces and displayed a spherical cap shape modified by a wetting ridge close to the contact line due to balancing the interfacial forces at the line of contact between the droplet, the lubricant liquid and air (represented by a Neumann triangle). The wetting ridge leads to the concept of a wetting “skirt” of lubricant around the base of the droplet. For the SLIP surfaces, we found that the evaporation of small sessile droplets (∼2 mm in diameter) followed an ideal constant contact angle mode where the apparent contact angle was defined from the intersection of the substrate profile with the droplet spherical cap profile. A theoretical model based on diffusion controlled evaporation was able to predict a linear dependence in time for the square of the apparent contact radius. The experimental data was in excellent quantitative agreement with the theory and enabled estimates of the diffusion constant to be obtained

    Analysis of the structure, configuration, and sizing of Cu and Cu oxide nanoparticles generated by fs laser ablation of solid target in liquids

    Get PDF
    We report on the analysis of structure, configuration, and sizing of Cu and Cu oxide nanoparticles (Nps) produced by femtosecond (fs) laser ablation of solid copper target in liquids. Laser pulse energy ranged between 500 µJ and 50 µJ. Water and acetone were used to produce the colloidal suspensions. The study was performed through optical extinction spectroscopy using Mie theory to fit the full experimental spectra, considering free and bound electrons size dependent contributions to the metal dielectric function. Raman spectroscopy and AFM technique were also used to characterize the sample. Considering the possible oxidation of copper during the fabrication process, two species (Cu and Cu2O) arranged in two structures (bare core or core-shell) and in two configuration types (Cu-Cu2O or Cu2O-Cu) were considered for the fitting depending on the laser pulse energy and the surrounding media. For water at high energy, it can be observed that a Cu-Cu2O configuration fits the experimental spectra of the colloidal suspension, while for decreasingenergy and below a certain threshold, a Cu2O-Cu configuration needs to be included for theoptimum fit. Both species coexist for energies below 170 µJ for water. On the other hand, for acetone at high energy, optimum fit of the full spectrum suggests the presence a bimodal Cu-Cu2O core-shell Nps distribution while for decreasing energy and below a 70 µJ threshold energy value, Cu2O-Cu core-shell Nps must be included, together with the former configuration, for the fit of the full spectrum. We discuss possible reasons for the changes in the structural configuration of the core-shell Nps.Fil: Schinca, Daniel Carlos. Universidad Nacional de la Plata. Facultad de Cs.exactas. Instituto de Fisica de la Plata; ArgentinaFil: Videla, Fabian Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones Opticas (i); ArgentinaFil: Fernández van Raap, Marcela Beatriz. Universidad Nacional de la Plata. Facultad de Ingenieria; ArgentinaFil: Scaffardi, Lucia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones Opticas (i); ArgentinaFil: Santillán, Jesica María José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones Opticas (i); Argentin

    Can cosmic strangelets reach the earth?

    Full text link
    The mechanism for the propagation of strangelets with low baryon number through the atmosphere of the Earth has been explored. It has been shown that under suitable initial conditions, such strangelets may indeed reach depths near mountain altitudes with mass numbers and charges close to the observed values in cosmic ray experiments.Comment: RevTeX text, with 3 encoded eps figures. To appear in Physical Review Letter

    Observations of fluorescent aerosol-cloud interactions in the free troposphere at the High-Altitude Research Station Jungfraujoch

    Get PDF
    © 2016 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and re production in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/3.0/. Published by Copernicus Publications.The fluorescent nature of aerosol at a high-altitude Alpine site was studied using a wide-band integrated bioaerosol (WIBS-4) single particle multi-channel ultraviolet - light-induced fluorescence (UV-LIF) spectrometer. This was supported by comprehensive cloud microphysics and meteorological measurements with the aims of cataloguing concentrations of bio-fluorescent aerosols at this high-altitude site and also investigating possible influences of UV-fluorescent particle types on cloud-aerosol processes. Analysis of background free tropospheric air masses, using a total aerosol inlet, showed there to be a minor increase in the fluorescent aerosol fraction during in-cloud cases compared to out-of-cloud cases. The size dependence of the fluorescent aerosol fraction showed the larger aerosol to be more likely to be fluorescent with 80% of 10 μm particles being fluorescent. Whilst the fluorescent particles were in the minority (NFl/NAll = 0.27 ± 0.19), a new hierarchical agglomerative cluster analysis approach, Crawford et al. (2015) revealed the majority of the fluorescent aerosols were likely to be representative of fluorescent mineral dust. A minor episodic contribution from a cluster likely to be representative of primary biological aerosol particles (PBAP) was also observed with a wintertime baseline concentration of 0.1 ± 0.4 L-1. Given the low concentration of this cluster and the typically low ice-active fraction of studied PBAP (e.g. pseudomonas syringae), we suggest that the contribution to the observed ice crystal concentration at this location is not significant during the wintertime. © Author(s) 2016.Peer reviewedFinal Published versio
    corecore