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Orbital angular momentum transfer to microparticles in vacuum
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We demonstrate the transfer of orbital angular momentum to an optically levitated microparticle
in vacuum. The microparticle is placed within a Laguerre-Gaussian beam and orbits the annular
beam profile with increasing angular velocity as the air drag coefficient is reduced. We explore
the particle dynamics as a function of the topological charge of the levitating beam. Our results
reveal that there is a fundamental limit to the OAM that may be transferred to a trapped particle,
dependent upon the beam parameters and inertial forces present.

The transfer of optical angular momentum to atoms,
molecules and mesoscopic particles enables new funda-
mental insights as well as applications. Spin angular mo-
mentum is associated with the polarisation state of light
whereas orbital angular momentum (OAM) is associated
with an inclined wavefront resulting in an azimuthal com-
ponent to the Poynting vector of the field. In the domain
of manipulating mesoscopic particles, both types of an-
gular momentum have been successfully transferred to
microparticles in liquid and in air leading to innovative
studies of microrheology [1–6] and a deeper insight into
optical angular momentum transfer in both the parax-
ial and non-paraxial regimes [7–9]. A recent emergent
area is the area of optomechanics in vacuum enabled
by optically trapped microparticles [10–14]. This opens
the path to new studies of mesoscopic particles at the
classical-quantum interface. Recently, we demonstrated
transfer of spin angular momentum to trapped birefrin-
gent microparticles in vacuum, reaching rotation rates in
the MHz regime [15, 16]. OAM transfer in vacuum to
a trapped particle promises novel and hitherto unrecog-
nised perspectives for mesoscopic quantum studies. We
draw analogies with the wealth of new science that has
emerged from quantum gases and their interaction with
light fields possessing OAM [17].

In this paper, we demonstrate the transfer of OAM to
silica microparticles in vacuum. We explore particle mo-
tion around the annular profile of a Laguerre-Gaussian
beam, where the beam’s annular diameter is larger than
the particle diameter. The trapping is two dimensional
and relies on an interplay between the optical gradient
and scattering forces, with contributions from inertial
forces and gravity. Our experimental observations are
supported by rigorous numerical analysis in the non-
paraxial regime. Importantly, we see beam parameter re-
gions where the particle leaves the trap indicating a fun-
damental limit to the magnitude of OAM transfer that
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can take place in such a system. Our work is the first
experimental indication that a particle trapped in an op-
tical vortex shows complex trapping force constants [18]
and that stable periodic orbital motion requires the pres-
ence of ambient damping.

A Laguerre-Gaussian (LG) mode possesses an OAM
of `~ per photon [19], with ` the topological charge of
the mode. For ` 6= 0, and radial mode index p = 0, the
phase singularity on the beam axis results in a zero ax-
ial intensity yielding an annular beam profile. OAM is
transferred to a trapped object due to light scattering by
the trapping field. We first investigated the beam prop-
erties of the LG modes of a linearly polarised light beam.
Fig. 1 shows the beam radius that scales linearly with
the topological charge in the range of 4 ≤ ` ≤ 11 [4, 20].
As the total power transmitted to vacuum is maintained
constant up to ` ≤ 20 (limited by the back aperture of
the MO), the mean ring power of the beam annulus de-
creases linearly with ` by assuming that the beam waist
remains constant for different `. Inset shows the annu-
lar beam profile of ` = 10 where the intensity variation
on the annulus is about 30% for two standard deviations
(2σ).

FIG. 1. Experimentally determined beam properties showing
the annular intensity radius and mean ring power as a function
of the topological charge.

The optomechanics of a particle interacting with an
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LG mode is determined by the interplay between a num-
ber of parameters: The total torque transferred to the
particle depends on the beam topological charge via the
angular momentum per photon `~, the mean ring power
P of the LG beam, the annular radius of the orbit r, as
well as on the optical scattering properties of the par-
ticle. The Stokes drag coefficient Γ of the residual gas
molecules plays an important role in vacuum since the
inertial force increases with rotation rate while the ra-
dial trapping force remains constant. This effect changes
the particle trajectories in both the lateral and axial trap-
ping directions. Fig. 2b shows the trajectory of a silica
sphere for the LG beam with ` = 10 (see supplementary
videos and Fig. 2a for a calculated beam profile), at a
pressure of 16.39 kPa, obtained from the COM motion
tracking using each individual frame (3, 000 data points
in total for 1 s). The dashed circle shows the location of
the LG (` = 10) beam peak. The discrepancy between
the particle trajectory and the LG beam peak position is
caused by the increased inertial force counteracting the
radial trapping force.

FIG. 2. Beam profile of the LG beam and trajectories of a
silica particle. (a) Calculated profile of the LG beam (` = 10)
cross-section at the centre of the annulus (nominal focus at
z = 15µm from the glass substrate at z = 0). (b) Particle
trajectories at a pressure of 16.39 kPa along with a fitted cir-
cle (red solid line) and the beam circumference for the ` = 10
beam (red dashed line) at focus. (c) Radial position distribu-
tion for a particle around the fitted circle in (b).

The motion and trajectory of microparticles is highly
dependent on the damping coefficient Γ. Fig. 3 shows the
variation of the orbital radius and the orbital velocity as a
function of Γ. We observe that as Γ decreases with lower
pressure, the orbital velocity, v̄ increases (Fig. 3b), which
in turn increases the inertial force resulting in a wider
orbital circumference than the beam annulus (Fig. 3a).
Combining the measured orbital velocity and orbital ra-
dius it is possible to calculate the inertial force, Fi, acting

on the particle. The gradient of the inertial force with
respect to the orbital radius, ∆Fi/∆r yields a radial trap
stiffness κr which in this case is 110.6 fN/µm, value that
is comparable to the values obtained from the equiparti-
tion theorem (Fig. 2c).

FIG. 3. Dynamics of a silica particle with the LG beam of
` = 10 depending on the damping coefficient Γ. (a) Orbital
radius. (b) Orbital velocity. Error bars indicate 2σ.

It is of particular theoretical interest to understand the
interplay between the optomechanical forces that deter-
mine the particle dynamics. To elucidate this, we per-
formed simulations in which a silica sphere of 5µm in
diameter is levitated by spherically aberrated Laguerre-
Gaussian beams with different topological charges (0 ≤
` ≤ 15). The total optical power of 81.6 mW (measured
at the back aperture of the objective) and the damp-
ing coefficient, Γ (corresponding to a residual pressure of
16.39 kPa) are kept constant in the simulation.

The numerical model is based on a Mie scattering ap-
proach. The spherical aberration was determined using
the angular spectral decomposition approach [21]. The
optical force was determined directly from the optical
eigenmodes of the system [22, 23] and calculated using
the MATLAB EigenOptics package [24]. More precisely,
we calculate the optical momentum transfer for any two-
by-two superposition of vector spherical harmonics up to
the fiftieth order. This delivers a force interaction ma-
trices having 5202×5202 elements. This Hermitian ma-
trix links the Mie coefficients directly to the momentum
transfer to the Mie particle. The decomposition of the in-
cident beam onto the vector spherical harmonic basis set
delivers, via the momentum interaction matrix, the force
acting on the particle. What is more, this calculation
can be speed up taking into account the reduced number
of eigenvectors of the matrix that have significant eigen-
values. Indeed, the smaller the particles, the small the
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number of the of optical momentum eigenmodes. In our
specific case, about 800 modes are sufficient to describe
the force acting of the particle. These optical eigenmodes
correspond to orthogonal fields with respect to the mo-
mentum transfer i.e. the momentum transferred by any
superposition of eigenmodes is equal to the sum of the
momenta transferred by each eigenmode separately. The
rest of the simulation corresponds to decomposing the
incident beam onto these eigenmodes.

Figs. 4a-c shows the calculated orbital trajectories of a
particle for different topological charges, `. As the index
` increases so does the orbital radius of the particle mo-
tion. This is expected as the increase in azimuthal force
with ` leads to an increase in beam diameter and, more
importantly, a faster orbital rotation rate. This in turn
leads to an increase in inertial force (centrifugal in this
case) and thus to an increase in the orbital radial position
with respect to the radial trap (Fig. 4d). This outward
movement can be counteracted by the radial trap only
up to a maximal orbital rate. In our case, this maxi-
mal orbital rate is achieved for values larger than ` = 14
(Fig. 4e). On the other hand, for ` smaller than 5 no
orbital motion is observed as the diameter of the trap-
ping beam is smaller than the diameter of the particle
(Fig. 4e). This leads to a stable particle position in the
centre of the beam thus cancelling the orbital azimuthal
forces. It is also interesting to consider the case of a par-
ticle placed within a perfect vortex beam [25], where the
beam radius is independent of `. Here, we would observe
increasing orbital speeds until the outward inertial force
exceeds that of optical force in the system, when again
the particle would leave its azimuthal trajectory.

We further remark that the axial position of the parti-
cle changes with topological charge. This is linked to the
variation of the “scattering force” acting on the particle
and imparted by levitating beam. This upwards force
counterbalances the gravitational force and can be seen,
in a first approximation, to depend on the mean ring
power (Fig. 1). We can think of the particle orbiting on
the middle of an “optical funnel”. As the power density
of the beam scales with `, the particle would find a dif-
ferent axial equilibrium position, which is determined by
the balance between the radiation pressure of the beam
and the gravitational force on the particle.

In conclusion, we have described the first experimental
demonstration of mesoscopic particle rotation in vacuum
within a light field possessing OAM. Criteria for stable
particle rotational motion have been established theoreti-
cally and experimentally, demonstrating good agreement
between experiment and numerical simulations. Our
work shows that there is a limit to the possible OAM
transfer to a trapped, orbiting particle. This effect was
predicted theoretically [18] and can be understood con-
sidering the direct link between the magnitude of the
azimuthal index and the beam radius [20].

I. METHODS

Optical system. Our vacuum system uses a modifi-
cation of the holographic optical trapping system used
in our previous setup [6, 15]. A spatial light modula-
tor (SLM, Hamamatsu LCOS X10468-03) is placed in a
plane conjugate to the back aperture of the microscope
objective (MO, Nikon, E-Plan 100×, NA=1.25) to allow
for the generation of Laguerre-Gaussian beams with var-
ious topological charges and three-dimensional position-
ing of the Laguerre-Gaussian mode in the trap volume.
The active surface area (16 mm by 12 mm) of the SLM is
overfilled with a collimated continuous wave laser beam
(IPG, YLM-5-LP, wavelength of 1070 nm), and the first
diffraction order of a circularly-apertured blazed grating
is used for modulation of the phase-front. An aperture
at a plane conjugate with the sample is used to prevent
unmodulated light from entering the vacuum chamber.
Any aberration, including that caused by the divergence
of the transmitted beam is compensated for by the SLM
with the help of an auxiliary camera at a plane conjugate
to the sample.

Particle levitation. Dry silica microspheres of 5µm in
diameter (Thermo Scientific) are preloaded onto a circu-
lar glass coverslip (Harvard Apparatus, 150µm in thick-
ness) that is used as the vacuum chamber window for the
trapping beam through the MO. A piezo electric trans-
ducer (APC International) affixed to the chamber is op-
erated at 140 kHz to detach microspheres from the lower
glass window to load particles into the optical trap. Sin-
gle silica spheres are trapped with a linearly polarised
light field at an optical power of 81.6 mW (measured at
the back aperture of the MO). Once a single sphere is
trapped at atmospheric pressure, the chamber pressure
is gradually reduced to ∼ 10 kPa.

Stroboscopic imaging. To investigate the optome-
chanics of a trapped particle in vacuum, we em-
ployed a fast CMOS camera (Mikrotron GmbH, EoSens:
3.0 k fps) synchronised with pulses from a nanosecond
laser (Elforlight, SPOT: wavelength of 532 nm, pulse
width of . 1 ns, pulse repetition rate of 3.0 kHz), which
acts as a stroboscope at a sub millisecond time scale [15].

Data analysis. To establish the average orbital tra-
jectory, we fit a circle with a radius r (red solid line in
Fig. 2b) to the particle’s COM motion. The particle’s po-
sitional change ∆d between two successive frames (∆t =
0.33 ms) provides the orbital velocity ∆v = ∆d/∆t. Av-
eraging this instantaneous velocity over multiple frames
defines the average azimuthal velocity v̄. The orbital ro-
tation rate, Ω is then obtained as Ω = 2πr/v̄ and the in-
ertial force, Fi, can be determined as Fi = mv̄2/r, where
m is the mass of the silica sphere (m = 1.19× 10−13 kg).
The Stokes drag force, Fd, can also be calculated as
Fd = Γv̄ = 6πµ(P )rv̄, where µ(P ) is the residual gas
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FIG. 4. Comparison between numerical simulations and experimental observations. (a-c) Numerical simulations of particle
trajectories for different topological charges, `. Each panel shows top-, aerial- and side-views, respectively. (d-e) Measured
versus calculated orbital radius and velocity as a function of topological charge `.

viscosity depending on the pressure. Here the local vis-
cosity µ(P ) in the vicinity of the microparticle is exper-
imentally determined by taking the ratio of the rotation
rates of a spinning vaterite microparticle between pres-
sures of P and P0 where P0 is the reference pressure at
105 Pa. In this case we can define the local viscosity as
µ(P ) = µ0Ω(P0)/Ω(P ) where µ0(P0) denotes the gas vis-
cosity of air [15, 26]. By averaging the above quantities
over a time interval (e.g. 100 ms), we determine a set of
ten measurements, which is used to evaluate the standard
deviation error for each measured quantity.

II. SUPPLEMENTARY INFORMATION

Supplementary videos (rendered at 25 fps from 3000 fps)
show a trapped silica particle (5µm in diameter) orbiting
either clockwise or anti-clockwise for the LG modes with
` = ±10 at a pressure of 16.39 kPa. The OAM transferred
from the optical vortex drives the levitated silica sphere
once around the circumference with an orbital rate faster
than 50 Hz for a total optical power, P = 81.6 mW.
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