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Abstract. The fluorescent nature of aerosol at a high-

altitude Alpine site was studied using a wide-band integrated

bioaerosol (WIBS-4) single particle multi-channel ultravio-

let – light-induced fluorescence (UV-LIF) spectrometer. This

was supported by comprehensive cloud microphysics and

meteorological measurements with the aims of catalogu-

ing concentrations of bio-fluorescent aerosols at this high-

altitude site and also investigating possible influences of UV–

fluorescent particle types on cloud–aerosol processes.

Analysis of background free tropospheric air masses, us-

ing a total aerosol inlet, showed there to be a minor increase

in the fluorescent aerosol fraction during in-cloud cases com-

pared to out-of-cloud cases. The size dependence of the fluo-

rescent aerosol fraction showed the larger aerosol to be more

likely to be fluorescent with 80 % of 10 µm particles being

fluorescent. Whilst the fluorescent particles were in the mi-

nority (NFl/NAll= 0.27± 0.19), a new hierarchical agglom-

erative cluster analysis approach, Crawford et al. (2015) re-

vealed the majority of the fluorescent aerosols were likely

to be representative of fluorescent mineral dust. A minor

episodic contribution from a cluster likely to be represen-

tative of primary biological aerosol particles (PBAP) was

also observed with a wintertime baseline concentration of

0.1± 0.4 L−1. Given the low concentration of this cluster

and the typically low ice-active fraction of studied PBAP

(e.g. pseudomonas syringae), we suggest that the contribu-

tion to the observed ice crystal concentration at this location

is not significant during the wintertime.

1 Introduction

The formation of cloud particles and their subsequent inter-

actions with the atmosphere are highly uncertain, with the

formation and evolution of mixed-phase and glaciated clouds

being poorly understood (Penner et al., 2001). Improving our

understanding of primary ice nucleation is critical in under-

pinning these uncertainties, as even modest concentrations of

primary ice can result in the rapid glaciation via secondary

ice production mechanisms and subsequently cause precipi-

tation in mixed-phase clouds, drastically changing cloud life-

time (Lloyd et al., 2015; Crawford et al., 2012; Crosier et al.,

2011); e.g. Crawford et al. (2012) showed that low con-

centrations of primary ice (0.01 L−1) resulted in the rapid

glaciation of a shallow convective wintertime cumulus via

the Hallet–Mossop ice multiplication process.

Many candidate aerosols have been assessed for their het-

erogeneous ice nucleating ability with a particular empha-

sis being placed on mineral dust and primary biological

aerosols. The ice nucleating efficiency of many naturally oc-

curring and surrogate dust aerosols have been investigated

and they are generally considered to be efficient ice nuclei

with observations of ice activation occurring over water sub-

saturated and supersaturated conditions at temperatures be-

low −10 ◦C (Hoose and Möhler, 2012). The influence of ac-

cumulated coatings such as secondary organic aerosol, sul-

furic acid, and ammonium sulfate through atmospheric pro-

cessing have also been assessed, where it was found these act
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to significantly increase the saturation ratio required for ice

nucleation, effectively deactivating an otherwise ice-active

mineral dust (Chernoff et al., 2010; Koehler et al., 2010;

Sullivan et al., 2010; Cziczo et al., 2009; Eastwood et al.,

2008; Möhler et al., 2008b). Saharan desert dust was ob-

served during an experiment in a Florida region where it was

suggested that the dust may have been acting as an effec-

tive high-temperature ice nucleus resulting in the observed

glaciation of an altocumulus cloud at −5 ◦C (Sassen et al.,

2003). Saharan desert dust was also found to be the major

non-volatile component of ice crystal residuals in cirrus over

the Alps (Heintzenberg et al., 1996). The high ice nucleation

efficiency of mineral dusts and their capacity for long-range

transport therefore make them a potentially significant com-

ponent in the formation and modification of clouds world-

wide.

Certain primary biological aerosol particles (PBAP) ex-

hibit the ability to nucleate ice and it has recently been sug-

gested that ice-active PBAP may have evolved over geo-

logical timescales to enhance rainfall, fostering an environ-

ment beneficial to the growth of plants and microorganisms

through the so-called bioprecipitation feedback cycle (Mor-

ris et al., 2014). A small number of bacterial strains, fungal

spores, and rusts have been identified as ice active at tem-

peratures warmer than −10 ◦C due to the presence of an ice

nucleating protein in the outer cell wall, which is structurally

similar to ice, facilitating ice growth (Kajava and Lindow,

1993; Govindarajan and Lindow, 1988; Hoose and Möh-

ler, 2012). However, of the ice-active bacterial strains stud-

ied so far only a small fraction nucleates ice at very warm

temperature, e.g. Möhler et al. (2008a) demonstrated that

Pseudomonas syringae have a maximum ice-active fraction

of 0.005 at −9.7 ◦C. However, they may still play a signifi-

cant role in the formation and modification of clouds; plant

surface derived bacterial aerosol can be transported to the

higher levels of the atmosphere in high concentrations as a

result of heavy rainfall and storm generated uplift (Crawford

et al., 2014; DeLeon-Rodriguez et al., 2013; Huffman et al.,

2013).

The High-Altitude Research Station Jungfraujoch has

hosted several intensive measurement campaigns to study

cloud–aerosol interactions (e.g. Targino et al., 2009;

Choularton et al., 2008; Cozic et al., 2007; Verheggen et al.,

2007). Previous measurements at the site have found there to

be an enhancement of mineral dust in cloud particle residu-

als compared to interstitial aerosol measurements (Kamphus

et al., 2010). This study also deployed a portable ice nucle-

ation chamber during June 2009, where two Saharan dust

events (SDEs) were reported. During the SDEs it was found

that ice nuclei concentrations were correlated with larger

aerosol (Dp > 0.5 µm) with reported deposition-mode ice nu-

clei concentrations of up to several hundred per litre. This

is discussed in more detail in the companion paper to this

study by Lloyd et al. (2015). In this study, we present con-

temporaneous aerosol and cloud microphysics measurements

at the same site to characterise the fluorescent constituents of

aerosol and their possible role in cloud processes.

2 Methods

2.1 Site description

During January and February 2014, the Ice NUcleation Pro-

cess Investigation And Quantification (INUPIAQ) project

was conducted at the High-Altitude Research Station

Jungfraujoch (JFJ; 3580 m a.s.l. – above sea level; 46.55◦ N,

7.98◦ E) in Switzerland to investigate the influence of a range

of aerosol types on ice crystal number concentration along-

side secondary ice processes in natural supercooled clouds.

The facility is situated on a mountain ridge in between the

peaks of the Jungfrau and Mönch with the Great Aletsch

glacier, the largest in the Alps, to the south and is well away

from major anthropogenic pollution sources. The JFJ site

is enveloped by cloud for approximately 37 % of the time

making it ideal for studying cloud–aerosol interactions, with

the site residing in the free troposphere for most of the time

during the wintertime (Baltensperger et al., 1998; Herrmann

et al., 2015).

2.2 Instrumentation and inlets

Fluorescent aerosol number–size distributions were mea-

sured using a Wideband Integrated Bioaerosol Spectrome-

ter version 4 (WIBS-4; University of Hertfordshire) on a

single particle basis and designed primarily for identifying

bio-fluorphores. A full technical description can be found

in Kaye et al. (2005), while various applications and anal-

ysis approaches including monitoring at high-altitude sites

can be found in Crawford et al. (2014), Gabey et al. (2013),

and Stanley et al. (2011). A brief description of the instru-

ment is now given. The WIBS-4 spectrometer exploits the

principle of ultraviolet light-induced fluorescence where a

particle of interest is excited with UV radiation and the re-

sultant fluorescence is detected, with fluorescence being an

indicator that the particle may be biological. In the WIBS-

4 aerosol is drawn into the sample volume and illuminated

by a 635 nm laser and the resultant forward scattered light is

used to determine the particle size and shape using a quad-

rant detector (Kaye et al., 2005). Side scattered light is col-

lected and sequentially triggers two xenon flash lamps, fil-

tered to excite the sampled particle at 280 and 370 nm. The

first lamp is pulsed and the resultant fluorescence is col-

lected, filtered and passed to two fluorescence detectors. The

detectors are filtered to measure fluorescence over two de-

tection bands (320–400 and 410–650 nm), which are then

recorded. The second flash lamp is then triggered and the

fluorescence detected by the second band is recorded. The

whole process takes approximately 25 µs and the instrument

has a maximum particle analysis rate of 125 particles s−1.

This provides three measurements of particle fluorescence

Atmos. Chem. Phys., 16, 2273–2284, 2016 www.atmos-chem-phys.net/16/2273/2016/
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over two excitation wavelengths, particle size, and an ap-

proximation of particle shape, all on a single particle basis

(Kaye et al., 2005). The excitation and detection wavelengths

have been selected to conform to auto-fluorescence bands of

common components of biological materials (e.g. proteins,

tryptophan and Nicotinamide adenine dinucleotide (NADH);

the latter is related to cell metabolism) such that they can

be discriminated from non-biological, non-fluorescent par-

ticles (Kaye et al., 2005). Due to detector sensitivity and

background fluorescence within the WIBS-4 optical cham-

ber, the fluorescence of aerosol with diameters Dp < 0.8 µm

cannot be accurately measured, and the counting efficiency

decreases (Gabey et al., 2011). Therefore, the analysis pre-

sented here is limited to aerosols with diameters greater

than 0.8 µm, unless otherwise stated. Whilst WIBS-4 instru-

ments have many advantages over traditional methods, ul-

traviolet – light-induced fluorescence (UV-LIF) spectrome-

ters, limitations include difficulties in discriminating differ-

ent classes of biological particles unambiguously and fluo-

rescent non-biological aerosols must be identified. Fluores-

cence of some mineral dusts was examined by Pöhlker et al.

(2012), who characterised their weak fluorescence properties

allowing them to be generally discriminated from common

PBAP using UV-LIF. In this study we use a new hierarchical

agglomerative data processing method for WIBS-4 UV-LIF

measurements to discriminate between particle types and the

methods used are described in Sect. 4. A detailed discussion

of this can be found in Crawford et al. (2015).

The WIBS-4 sampled from a total inlet (TI), which is now

described. The TI samples all particles with Dp < 40 µm and

for wind speeds < 20 m s−1. The sampled air is first heated

to +20 ◦C, evaporating droplets and ice crystals such that

their residuals are sampled along with any interstitial aerosol

(Weingartner et al., 1999).

A custom built scanning mobility particle sizer (SMPS)

has sampled continuously from the TI since 2008. It consists

of a differential mobility analyser (DMA; TSI 3071) and a

condensation particle counter (CPC; TSI 3775) and it mea-

sures the aerosol size distribution between 20 and 600 nm in

diameter with 6 min time resolution (Herrmann et al., 2015).

This was used to determine the origin of the sampled air

masses, using the concentration of particles larger then 90 nm

in diameter as described in Sect. 3.1 and Herrmann et al.

(2015).

Comprehensive cloud microphysics measurements were

made at the site and are described in Lloyd et al. (2015).

In this study, cloud droplet and ice crystal number con-

centrations were measured, respectively, with a Cloud

Droplet Probe (CDP-100; Droplet Measurement Technolo-

gies; DMT), described by Lance et al. (2010), and a 3-

View Cloud Particle Imager (3V-CPI). The CDP-100 is an

optical scattering spectrometer able to size particles in the

range 2 < Dp < 50 µm, whilst the 3V-CPI is an integrated 2-

D Stereo (2DS) LED imaging spectrometer and Cloud Parti-

cle Imaging (CPI), charge-coupled device imaging spectrom-

eter with resolutions of 10 and 2.3 µm, respectively (Lawson

et al., 2015). These are capable of measuring ice particle size

distributions between 10 and 1280 µm and able to discrim-

inate particle habit (based on shape analysis) for particles

greater than approximately 25–30 µm. Details of the analysis

techniques used for these instruments are provided in Crosier

et al. (2014) and Lloyd et al. (2015).

3 Results

During the experiment, there were two extended SDEs

(00:00 CET, 1 February–00:00 CET, 2 February and

04:30 CET, 18 February–19:00 CET, 19 February). In this

paper we focus on the period outside these events in order

to characterise the behaviour of high-Alpine fluorescent

aerosol under typical wintertime background conditions.

Discussion of the SDEs will be described elsewhere; 5 min

integration periods are used in all analysis unless otherwise

stated.

3.1 Meteorological conditions

An overview of the meteorological conditions at the JFJ

site over the background period 6–18 February is pro-

vided in Fig. 1. Average temperatures of −11.3± 4.3 and

−14.6± 3.3 ◦C were reported for out-of-cloud and in-cloud

periods, respectively, with wind speeds of 5.2± 3.3 m s−1.

Daily Hybrid Single Particle Lagrangian Integrated Trajec-

tory Model (HYSPLIT) back trajectory analysis (Fig. 2)

showed the majority of air masses to have passed over the At-

lantic Ocean in the preceding 72 h during this period. Analy-

sis of wind speed and direction shows the highest concentra-

tions of fluorescent aerosols occur when the wind is coming

from the south-east for wind speeds in excess of 15 m s−1,

i.e. coincident with flow up from the Aletsch glacier.

We use the approach of Herrmann et al. (2015) to deter-

mine the origin of the sampled air masses so that bound-

ary layer influenced air masses can be excluded from anal-

ysis; here we use the concentration of particles larger than

90 nm in diameter (N90) as described in Herrmann et al.

(2015) to distinguish periods of free tropospheric condi-

tions from those influenced by planetary boundary layer

(PBL). They found that N90= 40 cm−3 was a good approx-

imation to describe free tropospheric background aerosol

across all seasons, with periods influenced by the PBL result-

ing in N90 concentrations of several hundred to 1000 cm−3.

These values were found to be lower in winter, so we use

N90 < 30 cm−3 to be representative of background FT con-

ditions and N90 < 50 cm−3 to be representative of FT-like

conditions during the sampling period as described in Her-

rmann et al. (2015). A time series of the SMPS N90 concen-

tration for the analysis period is presented in Fig. 3 where the

background FT condition of N90 < 30 cm−3 is met 66.2 %

of the time and FT-like conditions where N90 < 50 cm−3 is

www.atmos-chem-phys.net/16/2273/2016/ Atmos. Chem. Phys., 16, 2273–2284, 2016
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Figure 1. Time series of meteorological data and total water content at the JFJ site for the period 6–18 February. Grey shaded areas denote

in cloud periods (TWC≥ 0.01 g m−3).

Figure 2. Left panel: HYSPLIT back trajectories for the period 8–18 February. Right panel: fluorescent aerosol concentration (L−1) depen-

dence on wind speed and direction. Wind speed denoted by concentric rings (5 m s−1 per ring).

met 88.4 % of the time. Periods with N90 > 50 cm−3, such

as the extended period between 09:00 CET 15 February–

09:00 CET 16 February, are excluded from analysis.

3.2 Background observations of fluorescent aerosol

To assess the background conditions during the sampling

period, we have compared the aerosol data collected dur-

ing the campaign to long-term measurements made dur-

ing February at the site between 2009 and 2014. Figure 4

shows median, 25th percentile, and 75th percentile SMPS

and Optical Particle Counter (OPC) size-resolved concen-

Atmos. Chem. Phys., 16, 2273–2284, 2016 www.atmos-chem-phys.net/16/2273/2016/
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Figure 3. Time series of N90 concentration for the analysis pe-

riod. Dashed line denotes the 30 cm−3 background concentration

described in Herrmann et al. (2015); the dotted line denotes this

50 cm−3 threshold used to distinguish free tropospheric conditions.

tration measurements made during the month of February

from 2009 to 2014, which we compare to the campaign me-

dian SMPS, OPC, and WIBS non-fluorescent and fluorescent

size-resolved concentrations, where the SMPS reports mobil-

ity diameter and the OPC and WIBS report optical diameter.

It can be seen that the campaign measurements typically lie

within the range of the 25th percentile and median values of

the long-term measurements during February at the site, sug-

gesting that the measurement period can be considered to be

representative of the typical background aerosol concentra-

tion at the Jungfraujoch during wintertime.

The average out-of-cloud total coarse aerosol, NAll, and

total fluorescent aerosol concentrations, NFl, measured by

the WIBS-4 were 30.6± 19.3 and 6.3± 5.7 L−1, respec-

tively, for the period 6–18 February, as shown in Fig. 5 (5 min

averages).

To investigate the potential interaction of fluorescent

aerosol with clouds, we have studied the fluorescent aerosol

concentration fraction (NFl/NAll) over different tempera-

ture regimes for out-of-cloud, mixed-phase, and glaciated

conditions as summarised in Fig. 6. Here we define

out of cloud as all periods where the total water con-

tent (TWC) is less than 0.01 g m−3, mixed phase as all

periods where the TWC≥ 0.01 g m−3 and ice mass frac-

tion (IMF) is less than 0.9, and glaciated as all periods where

TWC≥ 0.01 g m−3 and IMF≥ 0.9.

To test the statistical significance of these results we have

performed a one-way analysis of variance (ANOVA) analy-

sis on subsets of the data, which we now describe; first we

assessed the influence of temperature separately for in cloud

(TWC≥ 0.01 g m−3) and out-of-cloud (TWC < 0.01 g m−3)

conditions where it can be seen in Fig. 6 that in each case

the fluorescent fraction decreases with decreasing tempera-

ture. The ANOVA analysis returns small p values (4× 10−6

and 1× 10−4 for the out-of-cloud and in-cloud cases, respec-

tively), which indicates that the means are statistically signif-

icantly different; however, the spread in values are large; next

we assessed the influence of the presence of cloud on fluo-

rescent fraction at each temperature by comparing the out-of-

Figure 4. Comparison of long-term median SMPS and OPC

number–size distribution measurements made during Febru-

ary 2009 to 2014 to those made during the 2014 campaign. Grey

shaded area represents the quartiles of the long-term measurements.

cloud and in-cloud cases for each temperature regime. This

shows that the fluorescent fraction is generally increased in

clouds (Fig. 7, top panels) with p values indicating that the

means are significantly different (p < 0.05); finally we as-

sessed the influence of cloud type on the fluorescent fraction

for each temperature regime as shown in Fig. 7. Here it can

be seen that the fluorescent fractions are generally greater in

mixed-phase conditions than in glaciated conditions.

In summary it can be seen across all temperature regimes

that the average in-cloud fluorescent aerosol fractions were

slightly greater than for out-of-cloud conditions with the

largest increase occurring during mixed-phase conditions.

The observed increase in the fluorescent aerosol fraction in

mixed-phase conditions is generally a result of a reduction in

the non-fluorescent aerosol concentration relative to the cor-

responding out-of-cloud cases, rather than an enhancement in

the fluorescent aerosol concentration. One possible explana-

tion for this is that non-fluorescent aerosol has been removed

via Cloud Condensation Nuclei (CCN) activation and lost in

precipitating raindrops in mixed-phase clouds as this is not

pronounced in the glaciated cases; however, caution must

be applied when interpreting the results of this general ap-

proach as the differences in fluorescent aerosol fraction may

be caused by differences in the sampled air masses for each

case.

Figure 8 shows the fluorescent aerosol fraction for cloud

events persisting for a minimum of 30 min in duration with

mean, minimum, and maximum observed average fluores-

cent aerosol fractions of 0.27± 0.12, 0.05, and 0.49, respec-

tively, over 31 separate cloud events. It can be seen that many

of the clouds feature large variations in fluorescent aerosol

fraction, while others have relatively little variation, which

may be an effect of sampling several different air masses

during a single cloud event. The correlation between mean

and median fluorescent aerosol fraction and the following

meteorological and cloud microphysical parameters were in-

vestigated: IMF, TWC, ice water content (IWC), liquid wa-

www.atmos-chem-phys.net/16/2273/2016/ Atmos. Chem. Phys., 16, 2273–2284, 2016
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Figure 5. Top panel: time series of total fluorescent, NFl, (red) and total non-fluorescent, NNonFl, (black) aerosol concentrations measured

with the WIBS-4 sampling from the total inlet (TI). Middle panel: liquid (cyan) and ice (blue) water contents measured with the CDP-100

and 3V-CPI-2DS. Bottom panel: temperature. Box and whiskers denote 5th, 25th, 50th, 75th, and 95th percentiles. Grey shaded areas denote

in cloud periods (TWC≥ 0.01 g m−3).

ter content (LWC), ice and droplet concentrations, temper-

ature, and wind speed and direction. A scatter plot of the

mean (black +) and median (red diamonds) values for each

cloud event is shown in Fig. 9, along with the corresponding

r2 value where no significant correlation between parameters

is observed. No apparent trend is observed between the flu-

orescent aerosol fractions and contemporaneous mean me-

teorological or cloud microphysical parameters, suggesting

that particle fluorescence does not impact cloud evolution or

formation.

The majority of cloud events occur in the

−15 ◦C≤ T <−10 ◦C regime: Fig. 10 shows the average

fluorescent and non-fluorescent particle size distributions

for out-of-cloud, mixed-phase, and glaciated conditions in

this temperature regime. In each case the single mode of

the distribution occurs at 0.58 µm; however, the counting

efficiency for particles Dp < 0.8 µm is low (Gabey et al.,

2011), so the true mode is likely to be much smaller when

measured with, e.g., an SMPS as indicated in Fig. 4.

Figure 11 shows the size dependence of the fluorescent

aerosol fraction for the three studied temperature regimes for

out-of-cloud, mixed-phase, and glaciated conditions. In each

case, it was observed that the fluorescent aerosol fraction in-

creases with size, with approximately 80 % of 10 µm parti-

cles being fluorescent in nature, with the fluorescent aerosol

fraction decreasing to approximately 20 % for 1 µm particles.

Caution must be applied when interpreting the sub-micron

fluorescent aerosol fraction due to the reduced fluorescent

counting efficiency for particles Dp < 0.8 µm (Gabey et al.,

2011), which may lead to an underestimation of the fluores-

cent aerosol fraction at small sizes. For clarity and ease of

comparison only the mean ratios for each case are presented

here. Individual plots for each case showing the mean and

standard deviation of the fluorescent ratio are provided as a

Supplement.

4 Analysis of fluorescent aerosol characteristics

To probe the nature of the fluorescent aerosols, the sin-

gle particle data from the period 6–18 February (approx-

imately 27 000 fluorescent particles) were clustered using

the Ward hierarchical agglomerative cluster analysis link-

age and Z-score normalisation technique with the log of

the diameter and particle asymmetry factors (AF) used to

improve the symmetry of the cluster distribution. For fur-

ther details on the hierarchical agglomerative cluster analysis

method used here see Crawford et al. (2015). The Calinski–

Harabasz metric was used to determine the optimum clus-

Atmos. Chem. Phys., 16, 2273–2284, 2016 www.atmos-chem-phys.net/16/2273/2016/
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Figure 6. Top panel: fluorescent to total aerosol concentration ratio for out-of-cloud (black, TWC < 0.01 g m−3), mixed-phase (cyan,

TWC≥ 0.01 g m−3 and IMF < 0.9), and glaciated (blue, TWC≥ 0.01 g m−3 and IMF≥ 0.9) conditions sampled with the total inlet. Middle

and bottom panels: total fluorescent, NF, and total non-fluorescent, NNonFl, aerosol concentrations. Box and whiskers denote 5th, 25th, 50th,

75th, and 95th percentiles; x marker denotes mean.

Figure 7. Top panels: influence of cloud on fluorescent fraction for the studied temperature regimes. Bottom panels: influence of cloud type

on fluorescent fraction for the studied temperature regimes. Box and whiskers denote 5th, 25th, 50th, 75th, and 95th percentiles; x marker

denotes mean. ANOVA one-way p values indicated at top of each panel.

ter solution to retain, returning a three-cluster solution as

shown in Fig. 12. Clusters 1 and 2 were the dominant clus-

ters, both of which display weak fluorescence, which is char-

acteristic of mineral dust (Pöhlker et al., 2012). The sum

of particle concentrations from both clusters 1 and 2 cor-

related well with the total fluorescent particle concentration

((Ncl1+cl2)= 0.3+ 0.94×NFl, r
2
= 0.99) with campaign av-

erage concentrations of 1.7± 3.3 and 4.9± 8.8 L−1, respec-

tively. Cluster 3 displayed significantly higher fluorescence

in all three channels suggesting that this was likely represen-

www.atmos-chem-phys.net/16/2273/2016/ Atmos. Chem. Phys., 16, 2273–2284, 2016
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Figure 8. Box and whisker plots of fluorescent to total aerosol concentration ratio for cloud events persisting for at least 30 min in duration

with accompanying temperature, total water content, and ice mass fraction measurements. Box and whiskers denote 5th, 25th, 50th, 75th,

and 95th percentiles; x marker denotes mean.

tative of biological material (Crawford et al., 2014). How-

ever, periods during which cluster 3 particles appeared were

sparse with typical average concentrations over the period

of 0.1± 0.4 L−1 observed. Very occasional episodic events

with maximum concentrations reaching the order of a few

per litre were observed. We would expect low concentrations

of local PBAP in the wintertime at this site due to reduced

surface sources of seasonal PBAP coupled with an annual

minimum in PBL height (Ketterer et al., 2014; Collaud Coen

et al., 2011; Nyeki et al., 1998).

In summary, the majority of fluorescent aerosol sampled

at the site during these periods is likely non-biological in na-

ture with only minor episodic contributions from bioaerosols.

Such low concentrations of PBAP are unlikely to have any

significant impact on cloud evolution through primary ice nu-

cleation alone due to the low ice-active fractions reported for

typical PBAP; e.g. if the cluster was representative of Pseu-

domonas syringae (Möhler et al., 2008a) this would yield

an IN concentration of only 5× 10−4 L−1, which is sev-

eral orders of magnitude less than the reported ice crystal

concentration (Lloyd et al., 2015); however, we can only

speculate on the source of this cluster and this is used as

an illustrative example only. Low concentrations of primary

ice may cause glaciation via secondary mechanisms such as

the Hallet–Mossop (HM) process and Wegener–Bergeron–

Findeisen (WBF) process (e.g. Crawford et al., 2012), which

we now discuss in relation to this study; In this study sec-

ondary ice production via the HM process was ruled out as

the clouds observed were rarely within the active tempera-

ture range for this process as discussed in the Lloyd et al.

(2015) companion study; a second companion study by Far-

rington et al. (2015) investigated the potential influence of

the WBF process at the site where they found that the crit-

ical updraft speed (as defined by Korolev and Mazin, 2003;

Korolev, 2007) to maintain mixed-phase conditions was less

than the observed updraft velocity for the majority of the IN-

UPIAQ campaign using the ice 2D-S size distribution as the

input for the Ni ri term, as such they concluded that glaciation

via the WBF process was not significant. Reducing the Ni ri

term to the typical bio-IN primary ice concentrations ob-

served would reduce this critical threshold such that it would

be significantly less than the observed updrafts.

5 Summary and conclusions

Analysis of 288 h of contemporaneous aerosol fluorescence

and cloud microphysics measurements made during winter-

time background conditions at a high-Alpine site revealed

that the majority of aerosol sampled with a WIBS-4 UV-

LIF spectrometer were non-fluorescent with only 27 % of
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Figure 9. Correlation scatter plot of the fluorescent aerosol fraction to ice mass fraction (IMF); total water content (TWC), ice water

content (IWC), liquid water content (LWC), ice crystal and droplet number concentrations, temperature, and wind speed and direction

for cloud events persisting for at least 30 min in duration. Mean values are denoted by black+ symbols and median values by red diamonds.

Figure 10. WIBS Non-fluorescent (top panels) and fluorescent particle size distributions (bottom panels) for (left to right panels) out-of-

cloud (OOC), mixed-phase, and glaciated conditions over the temperature range −15 ◦C≤ T <−10◦ C. Solid line is mean, dashed line is

median; 5th to 95th percentiles and interquartile range shown with light and dark grey areas, respectively.
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Figure 11. Size-dependent fluorescent aerosol fractions for (left to right panels) out-of-cloud (black), mixed-phase (cyan), and glaciated

conditions (blue) over the three different temperature regimes studied.

Figure 12. Mean cluster centres for the three cluster solution using

Ward linkage and Calinski–Harabasz metric. Clusters contribute 25,

70, and 5 % to the fluorescent particle population.

the aerosol displaying fluorescence. We investigated the po-

tential links between aerosol fluorescence and cloud micro-

physics both in general and for 31 individual cloud events

persisting for at least 30 min and we report that there was

no apparent link between the fluorescent aerosol fraction and

observed cloud microphysical parameters and meteorology,

suggesting that aerosol fluorescence did not influence cloud

formation/evolution at the site during the measurement pe-

riod.

We observed that particle fluorescence is a strong function

of size with 80 % of 10 µm particles displaying fluorescence,

decreasing to 20 % at 1 µm. Hierarchical agglomerative clus-

ter analysis of the fluorescent particles yielded a three-cluster

solution: two of the clusters displayed fluorescent character-

istics consistent with fluorescent mineral dust and these clus-

ters accounted for approximately 95 % of the observed fluo-

rescent particles. The remaining cluster was moderately flu-

orescent in all three channels and is assumed to be biological

in origin. Concentrations of the assumed PBAP cluster were

sparse, occurring in occasional minor episodes with a base-

line concentration of 0.1± 0.4 L−1. Given the low concen-

tration of this cluster and the typically low ice-active fraction

of studied PBAP (e.g. Pseudomonas syringae; Möhler et al.,

2008a), we suggest that the contribution to the observed ice

crystal concentration at this location is not significant during

the wintertime. Analysis of wind speed and direction sug-

gests that large emissions from sources from the Po Valley

region may advect up the Aletsch glacier during periods of

high wind speed, which may be of significance during the

summer when the PBL is higher. We suggest that longer-term

data sets are required to examine this in detail.

The Supplement related to this article is available online

at doi:10.5194/acp-16-2273-2016-supplement.
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