148 research outputs found

    Exploration of the equilibrium operating space for NSTX-Upgrade

    Full text link
    This paper explores a range of high-performance equilibrium scenarios available in the NSTX-Upgrade device [J.E. Menard, submitted for publication to Nuclear Fusion]. NSTX-Upgrade is a substantial upgrade to the existing NSTX device [M. Ono, et al., Nuclear Fusion 40, 557 (2000)], with significantly higher toroidal field and solenoid capabilities, and three additional neutral beam sources with significantly larger current drive efficiency. Equilibria are computed with freeboundary TRANSP, allowing a self consistent calculation of the non-inductive current drive sources, the plasma equilibrium, and poloidal field coil current, using the realistic device geometry. The thermal profiles are taken from a variety of existing NSTX discharges, and different assumptions for the thermal confinement scalings are utilized. The no-wall and idealwall n=1 stability limits are computed with the DCON code. The central and minimum safety factors are quite sensitive to many parameters: they generally increases with large outer plasmawall gaps and higher density, but can have either trend with the confinement enhancement factor. In scenarios with strong central beam current drive, the inclusion of non-classical fast ion diffusion raises qmin, decreases the pressure peaking, and generally improves the global stability, at the expense of a reduction in the non-inductive current drive fraction; cases with less beam current drive are largely insensitive to additional fast ion diffusion. The non-inductive current level is quite sensitive to the underlying confinement and profile assumptions. For instance, for BT=1.0 T and Pinj=12.6 MW, the non-inductive current level varies from 875 kA with ITER-98y,2 thermal confinement scaling and narrow thermal profiles to 1325 kA for an ST specific scaling expression and broad profiles. This sensitivity should facilitate the determination of the correct scaling of transport with current and field to use for future fully non-inductive ST devices. Scenarios are presented which can be sustained for 8-10 seconds, or (20-30)τCR, at βN=3.8-4.5, facilitating, for instance, the study of disruption avoidance for very long pulse. Scenarios have been documented which can operate with βT~25% and equilibrated qmin>1. The value of qmin can be controlled at either fixed non-inductive fraction of 100% or fixed plasma current, by varying which beam sources are used, opening the possibility for feedback qmin control. In terms of quantities like collisionality, neutron emission, non-inductive fraction, or stored energy, these scenarios represent a significant performance extension compared to NSTX and other present spherical torii

    K-hindered decay of a six-quasiparticle isomer in Hf176

    Get PDF
    The structure and decay properties of high-K isomers in Hf176 have been studied using beam sweeping techniques and the Gammasphere multidetector array. A new ΔK=8 decay branch, from a Kπ=22⊃-, six-quasiparticle, isomeric (t1/2=43μs) state at 4864 keV to the 20⊃- state of a Kπ=14⊃- band, has been identified. The reduced hindrance factor per degree of K forbiddenness for this decay is measured to be unusually low (fν=3.2), which suggests K mixing in the states involved. The deduced interaction matrix elements are discussed within the context of relevant K-mixing scenarios. The 3266-keV state, previously interpreted as a Kπ=16⊃+ intrinsic state, is reassigned as the Jπ=16⊃+ member of the band based on the Kπ=15⊃+ state at 3080 keV. The systematics of fν values as a function of the degree of forbiddenness is discussed in light of this change

    Interplay between octupole and quasiparticle excitations in 178Hg and 180Hg

    Get PDF
    Excited structures in the Z = 80, 178Hg (N = 98), and 180Hg (N = 100) isotopes have been investigated with the Gammasphere spectrometer in conjunction with the recoil-decay tagging technique. The present data extend the previously known ground-state bands to higher spin and excitation energy. Negative parity bands with a complex decay towards the low spin states arising from both the prolate-deformed and the nearly spherical coexisting minima have been observed for the first time in both nuclei. It is shown that these sequences have characteristics in common with negative-parity bands in the heavier even-even Hg isotopes as well as in the Os and Pt isotones. These structures are interpreted as being associated at low spin with an octupole vibration which is crossed at moderate frequency by a shape driving, two-quasiproton excitation

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Progress in chemistry modelling for vapour and aerosol transport analyses

    No full text
    The ASTEC/Sophaeros computer code has been developed to model transport of reactive gases and aerosols in pipe flows with extensive coverage of chemical and physical phenomena. As part of the ASTEC severe-accident code co-developed by IRSN in France and GRS (Gesellschaft für Anlagen-und Reaktorsicherheit) in Germany, it is principally used to evaluate so-called radioactive source terms released to the environment in the event of potential accidents affecting water-cooled nuclear reactors. A major uncertainty in the past concerned the impact of chemistry on radioactivity transfer where the treatment of chemical phenomena was recognized as inadequate. Work described here, involving mainly systematic identification of relevant species and thermodynamic-data verification, has vastly improved this situation leading in particular to creation of a comprehensive database with fully-referenced sources of information. Further prospective improvements in this area are described. © Carl Hanser Verlag GmbH & Co. KG ISSN 1862-5282

    Cardiac transplantation.

    No full text

    The dual nature of perfectionism in sports: Relationships with emotion, motivation, and performance

    Get PDF
    Perfectionism is a prevalent characteristic in athletes. Yet some researchers have argued that perfectionism in sports is maladaptive because it undermines athletes’ performance and stifles athletic development. This argument, however, neglects that perfectionism is a multidimensional characteristic and that only some dimensions of perfectionism are clearly maladaptive, whereas others are not. This review argues that perfectionism is comprised of two main dimensions?perfectionistic strivings and perfectionistic concerns (Stoeber & Otto, 2006)?that show different and unique pattern of relationships with athletes’ emotion, motivation, and performance. In support of this argument the review will present findings indicating that only perfectionistic concerns show unique positive relationships with competitive anxiety, fear of failure, and avoidance goal orientations. In contrast, perfectionistic strivings show unique positive relationships with self-confidence, hope of success, approach goal orientations, and performance in training and competitions. The findings suggest that only perfectionistic concerns are clearly maladaptive, whereas perfectionistic strivings may form part of a healthy striving for excellence. Implications for applied sport psychology are discussed as are open questions for future research
    corecore