2,620 research outputs found

    Chronology protection in stationary three-dimensional spacetimes

    Full text link
    We study chronology protection in stationary, rotationally symmetric spacetimes in 2+1 dimensional gravity, focusing especially on the case of negative cosmological constant. We show that in such spacetimes closed timelike curves must either exist all the way to the boundary or, alternatively, the matter stress tensor must violate the null energy condition in the bulk. We also show that the matter in the closed timelike curve region gives a negative contribution to the conformal weight from the point of view of the dual conformal field theory. We illustrate these properties in a class of examples involving rotating dust in anti-de Sitter space, and comment on the use of the AdS/CFT correspondence to study chronology protection.Comment: 20 pages. V2: minor corrections, Outlook expanded, references added, published versio

    The British Society for Rheumatology Biologics Registers in Ankylosing Spondylitis (BSRBR-AS) study: Protocol for a prospective cohort study of the long-term safety and quality of life outcomes of biologic treatment

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.BACKGROUND: Axial spondyloarthropathy typically has its onset in early adulthood and can impact significantly on quality of life. In the UK, biologic anti-tumour necrosis factor therapy is recommended for patients who are unresponsive to non-steroidal anti-inflammatory drugs. There remain several unresolved issues about the long-term safety and quality of life outcomes of biologic treatment in axial spondyloarthropathy. Long-term "real-world" surveillance data are required to complement data from randomised controlled trials. METHODS/DESIGN: We are conducting a UK-wide prospective cohort study of patients with axial spondyloarthropathy who are naïve to biologic therapy at the time of recruitment. Those about to commence anti-tumour necrosis factor biologic therapy will enter a "biologic" sub-cohort with other patients assigned to a "non-biologic" sub-cohort. The primary objective is to determine whether the use of biologic therapy is associated with an increased risk of serious infection, while secondary objectives are to assess differences in malignancy, serious comorbidity, all-cause mortality but also assess impact on specific clinical domains (physical health, mental health and quality of life) including work outcomes between biologic and non-biologic patient cohorts. Patients will be followed-up for up to 5 years. Data are obtained at baseline and at standard clinical follow-up visits - at 3, 6 and 12 months and then annually for the biologic cohort and annually for the non-biologic cohort. This study will also collect biological samples for genetic analysis. DISCUSSION: Although biologic therapy is widely used for ankylosing spondylitis patients who are unresponsive to non-steroidal anti-inflammatory drugs, the majority of the available safety information comes from rheumatoid arthritis, where increased infection risk has consistently been shown. However, given the typical demographic differences between rheumatoid arthritis and axial spondyloarthropathy patients, it is important to develop an epidemiologically rigorous cohort of patients receiving biologic therapy to effectively evaluate outcomes with regard not only to safety but also to quantify benefits across clinical, psychosocial and work outcomes. CLINICAL TRIAL REGISTRATION: This is an observational cohort study and clinical trial registration was not required or obtained.BSRBR-AS is funded by the BSR, which in turn receives funding from the manufacturers of the biologic therapies included in this study (currently AbbVie, Pfizer and UCB). Pharmaceutical companies providing funds to BSR do not have a role in the oversight of the study, but they do receive advance notice of publications on which they are able to comment. They do not have access to the data collected but can request analyses of the data, for which additional funds are provided. GJM chairs a Pfizer competitive grant committee for which he receives an honorarium. GJM and GTJ have received separate funding from AbbVie and Pfizer to study spondyloarthritis in the Scotland Registry for Ankylosing Spondylitis (SIRAS) study. LK has received an unrestricted educational grant from UCB. AK has received research funding from Abbvie and Pfizer as well as speaker/chairman fees and payments for attending advisory boards from Abbvie, Pfizer and UCB. The remaining authors have no competing interests

    Evasions in Interactions: Examples from the Transcultural Nursing Research Field

    Get PDF
    Transcultural qualitative research is known for its utility in eliciting in-depth narratives, resulting in increased understanding about cultural phenomena. However, sometimes specific phenomena in the researcher’s inquiry are ignored, evaded, or denied; or a seemingly crucial experience demonstrating society’s unfairness, which the researcher had been expecting, does not emerge. In this paper, the issue of evasions in narratives is addressed, with two examples in which participants evaded the issue about which they were asked: perceptions of discrimination for aging adults of Mexican descent, and perceptions of living with life-limiting illnesses for aging African American adults. The Ethno-Cultural Gerontological Nursing Model framework’s Macro-level factors (climate of stereotypes, attitudes and ascriptions of the majority group) and Group-based influences (“Cultural/historical traditions” and “Cohort influences”) organize our thinking about addressing evasions by minority research participants. Four tools synthesized from the literature and our research experiences are recommended: (1) self-assessment of one’s own cultural values and lenses, (2) co-collaborating during the data collection and analysis phases, (3) acknowledging the power position of the researcher, and (4) over-reading

    The effectiveness of public health interventions to reduce the health impact of climate change:a systematic review of systematic reviews

    Get PDF
    Climate change is likely to be one of the most important threats to public health in the coming years. Yet despite the large number of papers considering the health impact of climate change, few have considered what public health interventions may be of most value in reducing the disease burden. We aimed to evaluate the effectiveness of public health interventions to reduce the disease burden of high priority climate sensitive diseases

    Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of ascaris reveals a novel fold and two discrete lipid-binding sites

    Get PDF
    Parasitic nematode worms cause serious health problems in humans and other animals. They can induce allergic-type immune responses, which can be harmful but may at the same time protect against the infections. Allergens are proteins that trigger allergic reactions and these parasites produce a type that is confined to nematodes, the nematode polyprotein allergens (NPAs). These are synthesized as large precursor proteins comprising repeating units of similar amino acid sequence that are subsequently cleaved into multiple copies of the allergen protein. NPAs bind small lipids such as fatty acids and retinol (Vitamin A) and probably transport these sensitive and insoluble compounds between the tissues of the worms. Nematodes cannot synthesize these lipids, so NPAs may also be crucial for extracting nutrients from their hosts. They may also be involved in altering immune responses by controlling the lipids by which the immune and inflammatory cells communicate. We describe the molecular structure of one unit of an NPA, the well-known ABA-1 allergen of Ascaris and find its structure to be of a type not previously found for lipid-binding proteins, and we describe the unusual sites where lipids bind within this structur

    Stationary Black Holes: Uniqueness and Beyond

    Get PDF
    The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998. Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's authorship. Significantly restructured and updated all sections; changes are too numerous to be usefully described here. The number of references increased from 186 to 32

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    Recommendations for exercise adherence measures in musculoskeletal settings : a systematic review and consensus meeting (protocol)

    Get PDF
    Background: Exercise programmes are frequently advocated for the management of musculoskeletal disorders; however, adherence is an important pre-requisite for their success. The assessment of exercise adherence requires the use of relevant and appropriate measures, but guidance for appropriate assessment does not exist. This research will identify and evaluate the quality and acceptability of all measures used to assess exercise adherence within a musculoskeletal setting, seeking to reach consensus for the most relevant and appropriate measures for application in research and/or clinical practice settings. Methods/design: There are two key stages to the proposed research. First, a systematic review of the quality and acceptability of measures used to assess exercise adherence in musculoskeletal disorders; second, a consensus meeting. The systematic review will be conducted in two phases and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to ensure a robust methodology. Phase one will identify all measures that have been used to assess exercise adherence in a musculoskeletal setting. Phase two will seek to identify published and unpublished evidence of the measurement and practical properties of identified measures. Study quality will be assessed against the COnsensus-based Standards for the selection of health Measurement Instruments (COSMIN) guidelines. A shortlist of best quality measures will be produced for consideration during stage two: a meeting of relevant stakeholders in the United Kingdom during which consensus on the most relevant and appropriate measures of exercise adherence for application in research and/or clinical practice settings will be sought. Discussion: This study will benefit clinicians who seek to evaluate patients’ levels of exercise adherence and those intending to undertake research, service evaluation, or audit relating to exercise adherence in the musculoskeletal field. The findings will impact upon new research studies which aim to understand the factors that predict adherence with exercise and which test different adherence-enhancing interventions. PROSPERO reference: CRD4201300621

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
    corecore