99 research outputs found
Association between a longer duration of illness, age and lower frontal lobe grey matter volume in schizophrenia
The frontal lobe has an extended maturation period and may be vulnerable to the long-term effects of schizophrenia. We tested this hypothesis by studying the relationship between duration of illness (DoI), grey matter (GM) and cerebro-spinal fluid (CSF) volume across the whole brain. Sixty-four patients with schizophrenia and 25 healthy controls underwent structural MRI scanning and neuropsychological assessment. We performed regression analyses in patients to examine the relationship between DoI and GM and CSF volumes across the whole brain, and correlations in controls between age and GM or CSF volume of the regions where GM or CSF volumes were associated with DoI in patients. Correlations were also performed between GM volume in the regions associated with DoI and neuropsychological performance. A longer DoI was associated with lower GM volume in the left dorsomedial prefrontal cortex (PFC), right middle frontal cortex, left fusiform gyrus (FG) and left cerebellum (lobule III). Additionally, age was inversely associated with GM volume in the left dorsomedial PFC in patients, and in the left FG and CSF excess near the left cerebellum in healthy controls. Greater GM volume in the left dorsomedial PFC was associated with better working memory, attention and psychomotor speed in patients. Our findings suggest that the right middle frontal cortex is particularly vulnerable to the long-term effect of schizophrenia illness whereas the dorsomedial PFC, FG and cerebellum are affected by both a long DoI and aging. The effect of illness chronicity on GM volume in the left dorsomedial PFC may be extended to brain structure–neuropsychological function relationships
Alterations in dorsal and ventral posterior cingulate connectivity in APOE ε4 carriers at risk of Alzheimer's disease
Background
Recent evidence suggests that exercise plays a role in cognition and that the posterior cingulate cortex (PCC) can be divided into dorsal and ventral subregions based on distinct connectivity patterns.
Aims
To examine the effect of physical activity and division of the PCC on brain functional connectivity measures in subjective memory complainers (SMC) carrying the epsilon 4 allele of apolipoprotein E (APOE 4) allele.
Method
Participants were 22 SMC carrying the APOE ɛ4 allele (ɛ4+; mean age 72.18 years) and 58 SMC non-carriers (ɛ4–; mean age 72.79 years). Connectivity of four dorsal and ventral seeds was examined. Relationships between PCC connectivity and physical activity measures were explored.
Results
ɛ4+ individuals showed increased connectivity between the dorsal PCC and dorsolateral prefrontal cortex, and the ventral PCC and supplementary motor area (SMA). Greater levels of physical activity correlated with the magnitude of ventral PCC–SMA connectivity.
Conclusions
The results provide the first evidence that ɛ4+ individuals at increased risk of cognitive decline show distinct alterations in dorsal and ventral PCC functional connectivity
Social Gerontology- Integrative and Territorial Aspects: A Citation Analysis of Subject Scatter and Database Coverage
To determine the mix of resources used in social gerontology research, a citation analysis was conducted. A representative sample of citations was selected from three prominent gerontology journals and information was added to determine subject scatter and database coverage for the cited materials. Results indicate that a significant portion of gerontology research, even from a social science perspective, relies roughly equally on medical resources as it does social science resources. Furthermore, there is a small but defined core of literature constituting scholarly “territory” unique to gerontology. Analysis of database indexing indicated that broad, interdisciplinary databases provide more comprehensive coverage of the cited materials than do subject-specific databases
Proneoplastic effects of PGE2 mediated by EP4 receptor in colorectal cancer
<p>Abstract</p> <p>Background</p> <p>Prostaglandin E<sub>2 </sub>(PGE<sub>2</sub>) is the major product of Cyclooxygenase-2 (COX-2) in colorectal cancer (CRC). We aimed to assess PGE<sub>2 </sub>cell surface receptors (EP 1–4) to examine the mechanisms by which PGE<sub>2 </sub>regulates tumour progression.</p> <p>Methods</p> <p>Gene expression studies were performed by quantitative RT-PCR. Cell cycle was analysed by flow cytometry with cell proliferation quantified by BrdU incorporation measured by enzyme immunoassay. Immunohistochemistry was employed for expression studies on formalin fixed paraffin embedded tumour tissue.</p> <p>Results</p> <p>EP4 was the most abundant subtype of PGE<sub>2 </sub>receptor in HT-29 and HCA7 cells (which show COX-2 dependent PGE<sub>2 </sub>generation) and was consistently the most abundant transcript in human colorectal tumours (n = 8) by qRT-PCR (ANOVA, p = 0.01). G0/G1 cell cycle arrest was observed in HT-29 cells treated with SC-236 5 μM (selective COX-2 inhibitor) for 24 hours (p = 0.02), an effect abrogated by co-incubation with PGE<sub>2 </sub>(1 μM). G0/G1 arrest was also seen with a specific EP4 receptor antagonist (EP4A, L-161982) (p = 0.01). Treatment of HT-29 cells with either SC-236 or EP4A caused reduction in intracellular cAMP (ANOVA, p = 0.01). Early induction in p21<sup>WAF1/CIP1 </sup>expression (by qRT-PCR) was seen with EP4A treatment (mean fold increase 4.4, p = 0.04) while other genes remained unchanged. Similar induction in p21<sup>WAF1/CIP1 </sup>was also seen with PD153025 (1 μM), an EGFR tyrosine kinase inhibitor, suggesting EGFR transactivation by EP4 as a potential mechanism. Additive inhibition of HCA7 proliferation was observed with the combination of SC-236 and neutralising antibody to amphiregulin (AR), a soluble EGFR ligand. Concordance in COX-2 and AR localisation in human colorectal tumours was noted.</p> <p>Conclusion</p> <p>COX-2 regulates cell cycle transition via EP4 receptor and altered p21<sup>WAF1/CIP1 </sup>expression. EGFR pathways appear important. Specific targeting of the EP4 receptor or downstream targets may offer a safer alternative to COX-2 inhibition in the chemoprevention of CRC.</p
Arcuate Fasciculus Abnormalities and Their Relationship with Psychotic Symptoms in Schizophrenia
Disruption of fronto-temporal connections involving the arcuate fasciculus (AF) may underlie language processing anomalies and psychotic features such as auditory hallucinations in schizophrenia. No study to date has specifically investigated abnormalities of white matter integrity at particular loci along the AF as well as its regional lateralization in schizophrenia. We examined white matter changes (fractional anisotropy (FA), axial diffusivity (AD), asymmetry indices) along the whole extent of the AF and their relationship with psychotic symptoms in 32 males with schizophrenia and 44 healthy males. Large deformation diffeomorphic metric mapping and Fiber Assignment Continuous Tracking were employed to characterize FA and AD along the geometric curve of the AF. Our results showed that patients with schizophrenia had lower FA in the frontal aspects of the left AF compared with healthy controls. Greater left FA and AD lateralization in the temporal segment of AF were associated with more severe positive psychotic symptoms such as delusions and hallucinations in patients with schizophrenia. Disruption of white matter integrity of the left frontal AF and accentuation of normal left greater than right asymmetry of FA/AD in the temporal AF further support the notion of aberrant fronto-temporal connectivity in schizophrenia. AF pathology can affect corollary discharge of neural signals from frontal speech/motor initiation areas to suppress activity of auditory cortex that may influence psychotic phenomena such as auditory hallucinations and facilitate elaboration of delusional content
Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function
Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes
- …