1,762 research outputs found

    It's the product not the polymer: Rethinking plastic pollution

    Get PDF
    Mismanaged plastic waste poses a complex threat to the environments that it contaminates, generating considerable concern from academia, industry, politicians, and the general public. This concern has driven global action that presents a unique opportunity for widespread environmental engagement beyond the immediate problem of the persistence of plastic in the environment. But for such an opportunity to be realized, it is vital that the realities of plastic waste are not misrepresented or exaggerated. Hotspots of plastic pollution, which are often international in their source, present complex environmental problems in certain parts of the world. Here we argue, however, that the current discourse on plastic waste overshadows greater threats to the environment and society at a global scale. Antiplastic sentiments have been exploited by politicians and industry, where reducing consumers' plastic footprints are often confused by the seldom‐challenged veil of environmental consumerism, or “greenwashing.” Plastic is integral to much of modern day life, and regularly represents the greener facilitator of society's consumption. We conclude that it is the product, not the polymer that is driving the issue of plastic waste. Contemporary consumption and disposal practices are the root of much of the anthropogenic waste in the environment, plastic, or not. Effective environmental action to minimize plastic in the environment should be motivated by changes in consumption practices, policies, and product design, and should be informed by objective science and legislation

    The human FK506-binding proteins: characterization of human FKBP19

    Get PDF
    Analysis of the human repertoire of the FK506-binding protein (FKBP) family of peptidyl-prolyl cis/trans isomerases has identified an expansion of genes that code for human FKBPs in the secretory pathway. There are distinct differences in tissue distribution and expression levels of each variant. In this article we describe the characterization of human FKBP19 (Entrez Gene ID: FKBP11), an FK506-binding protein predominantly expressed in vertebrate secretory tissues. The FKBP19 sequence comprises a cleavable N-terminal signal sequence followed by a putative peptidyl-prolyl cis/trans isomerase domain with homology to FKBP12. This domain binds FK506 weakly in vitro. FKBP19 mRNA is abundant in human pancreas and other secretory tissues and high levels of FKBP19 protein are detected in the acinar cells of mouse pancreas

    Entanglement distribution and quantum discord

    Full text link
    Establishing entanglement between distant parties is one of the most important problems of quantum technology, since long-distance entanglement is an essential part of such fundamental tasks as quantum cryptography or quantum teleportation. In this lecture we review basic properties of entanglement and quantum discord, and discuss recent results on entanglement distribution and the role of quantum discord therein. We also review entanglement distribution with separable states, and discuss important problems which still remain open. One such open problem is a possible advantage of indirect entanglement distribution, when compared to direct distribution protocols.Comment: 7 pages, 2 figures, contribution to "Lectures on general quantum correlations and their applications", edited by Felipe Fanchini, Diogo Soares-Pinto, and Gerardo Adess

    Anticancer Gene Transfer for Cancer Gene Therapy

    Get PDF
    Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field

    Promoting Physical Activity with Hard-to-Reach Women: An Iterative and Participatory Research Study

    Get PDF
    Approximately half of all UK women are insufficiently physically active, with the lowest activity rates among ‘Hard-to-Reach’ or unreached women. In this article, Kathryn Brook, Dr Andy Pringle FRSPH, Dr Jackie Hargreaves and Dr Nicky Kime of Leeds Beckett University outline their research into developing methods to assess and meet the needs of ‘Hard-to-Reach’ women in needs-led and person-centred interventions

    Leisure Time Physical Activity of Moderate to Vigorous Intensity and Mortality: A Large Pooled Cohort Analysis

    Get PDF
    Background: Leisure time physical activity reduces the risk of premature mortality, but the years of life expectancy gained at different levels remains unclear. Our objective was to determine the years of life gained after age 40 associated with various levels of physical activity, both overall and according to body mass index (BMI) groups, in a large pooled analysis. Methods and Findings: We examined the association of leisure time physical activity with mortality during follow-up in pooled data from six prospective cohort studies in the National Cancer Institute Cohort Consortium, comprising 654,827 individuals, 21–90 y of age. Physical activity was categorized by metabolic equivalent hours per week (MET-h/wk). Life expectancies and years of life gained/lost were calculated using direct adjusted survival curves (for participants 40+ years of age), with 95% confidence intervals (CIs) derived by bootstrap. The study includes a median 10 y of follow-up and 82,465 deaths. A physical activity level of 0.1–3.74 MET-h/wk, equivalent to brisk walking for up to 75 min/wk, was associated with a gain of 1.8 (95% CI: 1.6–2.0) y in life expectancy relative to no leisure time activity (0 MET-h/wk). Higher levels of physical activity were associated with greater gains in life expectancy, with a gain of 4.5 (95% CI: 4.3–4.7) y at the highest level (22.5+ MET-h/wk, equivalent to brisk walking for 450+ min/wk). Substantial gains were also observed in each BMI group. In joint analyses, being active (7.5+ MET-h/wk) and normal weight (BMI 18.5–24.9) was associated with a gain of 7.2 (95% CI: 6.5–7.9) y of life compared to being inactive (0 MET-h/wk) and obese (BMI 35.0+). A limitation was that physical activity and BMI were ascertained by self report. Conclusions: More leisure time physical activity was associated with longer life expectancy across a range of activity levels and BMI groups

    Personalisation in MOOCs: a critical literature review

    No full text
    The advent and rise of Massive Open Online Courses (MOOCs) have brought many issues to the area of educational technology. Researchers in the field have been addressing these issues such as pedagogical quality of MOOCs, high attrition rates, and sustainability of MOOCs. However, MOOCs personalisation has not been subject of the wide discussions around MOOCs. This paper presents a critical literature survey and analysis of the available literature on personalisation in MOOCs to identify the needs, the current states and efforts to personalise learning in MOOCs. The findings illustrate that there is a growing attention to personalisation to improve learners’ individual learning experiences in MOOCs. In order to implement personalised services, personalised learning path, personalised assessment and feedback, personalised forum thread and recommendation service for related learning materials or learning tasks are commonly applied

    Role of Misfolded N-CoR Mediated Transcriptional Deregulation of Flt3 in Acute Monocytic Leukemia (AML)-M5 Subtype

    Get PDF
    The nuclear receptor co-repressor (N-CoR) is a key component of the generic multi-protein complex involved in transcriptional control. Flt3, a key regulator of hematopoietic cell growth, is frequently deregulated in AML (acute myeloid leukemia). Here, we report that loss of N-CoR-mediated transcriptional control of Flt3 due to misfolding, contributes to malignant growth in AML of the M5 subtype (AML-M5). An analysis of hematopoietic genes in AML cells led to the identification of Flt3 as a transcriptional target of N-CoR. Flt3 level was inversely related to N-CoR status in various leukemia cells. N-CoR was associated with the Flt3 promoter in-vivo, and a reporter driven by the Flt3 promoter was effectively repressed by N-CoR. Blocking N-CoR loss with Genistein; an inhibitor of N-CoR misfolding, significantly down-regulated Flt3 levels regardless of the Flt3 receptor mutational status and promoted the differentiation of AML-M5 cells. While stimulation of the Flt3 receptor with the Flt3 ligand triggered N-CoR loss, Flt3 antibody mediated blockade of Flt3 ligand-receptor binding led to N-CoR stabilization. Genetic ablation of N-CoR potentiated Flt3 ligand induced proliferation of BA/F3 cells. These findings suggest that N-CoR-induced repression of Flt3 might be crucial for limiting the contribution of the Flt3 signaling pathway on the growth potential of leukemic cells and its deregulation due to N-CoR loss in AML-M5, could contribute to malignant growth by conferring a proliferative advantage to the leukemic blasts. Therapeutic restoration of N-CoR function could thus be a useful approach in restricting the contribution of the Flt3 signaling pathway in AML-M5 pathogenesis

    Understanding hereditary diseases using the dog and human as companion model systems

    Get PDF
    Animal models are requisite for genetic dissection of, and improved treatment regimens for, human hereditary diseases. While several animals have been used in academic and industrial research, the primary model for dissection of hereditary diseases has been the many strains of the laboratory mouse. However, given its greater (than the mouse) genetic similarity to the human, high number of naturally occurring hereditary diseases, unique population structure, and the availability of the complete genome sequence, the purebred dog has emerged as a powerful model for study of diseases. The major advantage the dog provides is that it is afflicted with approximately 450 hereditary diseases, about half of which have remarkable clinical similarities to corresponding diseases of the human. In addition, humankind has a strong desire to cure diseases of the dog so these two facts make the dog an ideal clinical and genetic model. This review highlights several of these shared hereditary diseases. Specifically, the canine models discussed herein have played important roles in identification of causative genes and/or have been utilized in novel therapeutic approaches of interest to the dog and human
    corecore