339 research outputs found

    INCOME TAX EFFECTS ON BEEF COW REPLACEMENT STRATEGY

    Get PDF
    Livestock Production/Industries,

    Calculating Ownership Costs.

    Get PDF
    4 p

    Custom Farm Machinery Rates in Texas--1973.

    Get PDF
    4 p

    Genetic structure and admixture in sheep from terminal breeds in the United States

    Get PDF
    Selection for performance in diverse production settings has resulted in variation across sheep breeds worldwide. Although sheep are an important species to the United States, the current genetic relationship among many terminal sire breeds is not well characterized. Suffolk, Hampshire, Shropshire and Oxford (terminal) and Rambouillet (dual purpose) sheep (n = 248) sampled from different flocks were genotyped using the Applied Biosystems Axiom Ovine Genotyping Array (50K), and additional Shropshire sheep (n = 26) using the Illumina Ovine SNP50 BeadChip. Relationships were investigated by calculating observed heterozygosity, inbreeding coefficients, eigenvalues, pairwise Wright’s FST estimates and an identity by state matrix. The mean observed heterozygosity for each breed ranged from 0.30 to 0.35 and was consistent with data reported in other US and Australian sheep. Suffolk from two different regions of the United States (Midwest and West) clustered separately in eigenvalue plots and the rectangular cladogram. Further, divergence was detected between Suffolk from different regions with Wright’s FST estimate. Shropshire animals showed the greatest divergence from other terminal breeds in this study. Admixture between breeds was examined using ADMIXTURE, and based on cross-validation estimates, the best fit number of populations (clusters) was K = 6. The greatest admixture was observed within Hampshire, Suffolk, and Shropshire breeds. When plotting eigenvalues, US terminal breeds clustered separately in comparison with sheep from other locations of the world. Understanding the genetic relationships between terminal sire breeds in sheep will inform us about the potential applicability of markers derived in one breed to other breeds based on relatedness

    Modelling Hepatic Endoderm Development: Highly Efficient Differentiation of Human Embryonic Stem Cells to Functional Hepatic Endoderm Requires ActivinA and Wnt3a Signalling.

    Get PDF
    Human embryonic stem cells (hESCs) are a valuable source of pluripotential primary cells. However, their homogeneous cellular differentiation to specific cell types _in vitro_ has proven difficult thus far. Wnt signalling has been shown to play important roles in coordinating development and we demonstrate that Wnt3a is differentially expressed at critical stages of human liver development _in vivo_. The essential role of Wnt3a in hepatocyte differentiation from hESCs is paralleled by our _in vitro_ model, demonstrating the importance of a physiological approach to cellular differentiation. Our studies provide compelling evidence that Wnt3a signaling is important for coordinated hepato-cellular function _in vitro_ and _in vivo_. In addition, we demonstrate Wnt3a facilitates clonal plating of hESCs capable of hepatic endoderm differentiation. These studies represent an important step forward toward the use of hESC-derived hepatocytes in biomedical applications and has opened the door to high through-put metabolic analysis of human liver function

    Occurrence of cytomegalovirus hepatitis in liver transplant patients

    Get PDF
    The differential diagnosis of liver dysfunction after orthotopic liver transplantation can be difficult. Cytomegalovirus (CMV) hepatitis is one possibility. This report reviews our experience with 17 cases of pathologically proven CMV hepatitis following liver transplantation and demonstrates the need for percutaneous liver biopsies to establish the diagnosis. There were seven pediatric patients (ages 2–11 years, five males, two females) and ten adult patients (ages 17–53 years, eight males, two females). The most common symptoms were prolonged fever (15 patients, with a mean duration of 22 ± 5.5 days), elevation in total bilirubin (14 patients), and elevation in liver enzymes (15 patients); all symptoms were also found in rejection. Leukopenia and thrombocytopenia, reported to frequently occur with CMV infection, were found in only three and five patients, respectively. Twelve patients with the above symptoms underwent percutaneous biopsy on one or more occasions to differentiate CMV hepatitis from rejection. The diagnosis was made at retransplantation in five patients. CMV hepatitis followed treatment for acute rejection in 14 patients and occurred without additional immunosuppression in three patients. All patients were maintained on cyclosporine and prednisone. Acute rejection episodes were treated with a 5‐day tapering dose of steroids (17 courses in 12 patients), OKT3 monoclonal antibody [Ortho (4 patients)] antithymocyte globulin [Upjohn (2 patients)], and azathioprine (1 patient). CMV was isolated from urine (nine patients), blood (nine patients), throat (seven patients), lungs (two patients), and other organs (two patients). CMV was cultured from the liver biopsy specimens in five of the seven attempts in pediatric patients. When the diangosis was confirmed in the absence of rejection, immunosuppression was routinely lowered. When rejection occurred concomitantly with CMV hepatitis, therapy had to be individualized. Retrospectively, three patients treated for rejection were noted at retransplantation to have only CMV hepatitis, and all three paients died. A high index of suspicion and the judicioususe of liver bopsies is essential in order to differentiate CMV hepatitis from other causes of posttransplant liver dysfunction. Copyright © 1988 Wiley‐Liss, Inc., A Wiley Compan

    Potential climatic transitions with profound impact on Europe

    Get PDF
    We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/

    Allele-Specific Virulence Attenuation of the Pseudomonas syringae HopZ1a Type III Effector via the Arabidopsis ZAR1 Resistance Protein

    Get PDF
    Plant resistance (R) proteins provide a robust surveillance system to defend against potential pathogens. Despite their importance in plant innate immunity, relatively few of the ∼170 R proteins in Arabidopsis have well-characterized resistance specificity. In order to identify the R protein responsible for recognition of the Pseudomonas syringae type III secreted effector (T3SE) HopZ1a, we assembled an Arabidopsis R gene T–DNA Insertion Collection (ARTIC) from publicly available Arabidopsis thaliana insertion lines and screened it for plants lacking HopZ1a-induced immunity. This reverse genetic screen revealed that the Arabidopsis R protein HOPZ-ACTIVATED RESISTANCE 1 (ZAR1; At3g50950) is required for recognition of HopZ1a in Arabidopsis. ZAR1 belongs to the coiled-coil (CC) class of nucleotide binding site and leucine-rich repeat (NBS–LRR) containing R proteins; however, the ZAR1 CC domain phylogenetically clusters in a clade distinct from other related Arabidopsis R proteins. ZAR1–mediated immunity is independent of several genes required by other R protein signaling pathways, including NDR1 and RAR1, suggesting that ZAR1 possesses distinct signaling requirements. The closely-related T3SE protein, HopZ1b, is still recognized by zar1 Arabidopsis plants indicating that Arabidopsis has evolved at least two independent R proteins to recognize the HopZ T3SE family. Also, in Arabidopsis zar1 plants HopZ1a promotes P. syringae growth indicative of an ancestral virulence function for this T3SE prior to the evolution of recognition by the host resistance protein ZAR1. Our results demonstrate that the Arabidopsis resistance protein ZAR1 confers allele-specific recognition and virulence attenuation of the Pseudomonas syringae T3SE protein HopZ1a

    The time scale of recombination rate evolution in great apes

    Get PDF
    We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471-475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10-15Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- And between-species genome-wide recombination rate variation in several close relatives
    corecore