8 research outputs found

    Modified Fruit Fly Optimization Algorithm for Analysis of Large Antenna Array

    Get PDF
    This research paper deals with the optimization of a large antenna array for maximum directivity using a modified fruit fly optimization algorithm (MFOA) with random search of two groups of swarm and adaptive fruit fly swarm population size. The MFOA is utilized to determine three nonlinear mathematical test functions, analysis of the optimal number of elements and optimal element spacing of the large antenna array, and analysis of nonuniform amplitude of antenna array. The numerical results demonstrate that the MFOA is effective in solving all test function and electromagnetic problems. The advantages of the proposed algorithm are ease of implementation, large search range, less processing time, and reduced memory requirement

    MICS/ISM Meander-Line Microstrip Antenna Encapsulated in Oblong-Shaped Pod for Gastrointestinal Tract Diagnosis

    No full text
    In light of the growth in demand for multiband antennas for medical applications, this research proposes a MICS/ISM meander-line microstrip antenna encapsulated in an oblong-shaped pod for use in diagnoses of the gastrointestinal tract. The proposed antenna is operable in the Medical Implant Communication System (MICS) and the Industrial, Scientific and Medical (ISM) bands. The antenna structure consists of a meander-line radiating patch, a flipped-L defected ground plane, and a loading resistor for antenna miniaturization. The MICS/ISM microstrip antenna encapsulated in an oblong-shaped pod was simulated in various lossy-material environments. In addition, the specific absorption rate (SAR) was calculated and compared against the IEEE C95.1 standard. For verification, an antenna prototype was fabricated and experiments carried out in equivalent liquid mixtures, the dielectric constants of which resembled human tissue. The measured impedance bandwidths (|S11| ≤ −10 dB) for the MICS and ISM bands were 398–407 MHz and 2.41–2.48 GHz. The measured antenna gains were −38 dBi and −13 dBi, with a quasi-omnidirectional radiation pattern. The measured SAR was substantially below the maximum safety limits. As a result, the described MICS/ISM microstrip antenna encapsulated in an oblong-shaped pod can be used for real-time gastrointestinal tract diagnosis. The novelty of this work lies in the use of a meander-line microstrip, flipped-L defected ground plane, and loading resistor to miniaturize the antenna and realize the MICS and ISM bands

    Superstrate-integrated Switchable Beam Rectangular Microstrip Antenna for Gain Enhancement

    Get PDF
    This research has proposed a switchable beam rectangular microstrip antenna with double parasitic patches, in which two PIN diodes were deployed for manipulation of the main beam direction and a superstrate (i.e. either a dielectric slab or metamaterial) for enhancement of the antenna gain. The dielectric slab is a second FR4 substrate while the metamaterial (MTM) is the 7×17 periodic structure of planar cycloid dipoles (PCD). Simulations were carried out and three different antenna prototypes (i.e. the proposed switchable beam rectangular microstrip antenna, the proposed antenna either with dielectric slab or MTM) fabricated and experimented. The simulation and experimental results are in good agreement and exhibit good impedance matching (|S11|<-10dB) along the operating frequency. The average measured gain is 7 dBi with the unidirectional radiation pattern along the operating frequency. The proposed switchable antennas with and without the superstrate are operable in the 2.4-2.5 GHz WLAN system and switchable in three directions of 0 deg, 30 deg and 330 deg (xy-plane). Moreover, the findings validate the applicability of either the dielectric slab or three MTM block-layers as the superstrate to improve the antenna gain
    corecore