96 research outputs found
Um papel para organismos de arqueia no desenvolvimento de placas ateroscleróticas vulneráveis e matriz mixomatosa
PURPOSE: Vulnerable plaques are characterized by a myxoid matrix, necrotic lipidic core, reactive oxygen species, and high levels of microorganisms. Aerobic microbes such as Chlamydophila pneumoniae and Mycoplasma pneumoniae usually do not survive in oxidative stress media. Archaea are anaerobic microbes with powerful anti-oxidative enzymes that allow detoxification of free radicals whose presence might favor the survival of aerobic microorganisms. We searched for archaeal organisms in vulnerable plaques, and possible associations with myxoid matrix, chlamydia, and mycoplasma bodies. METHODS: Twenty-nine tissue samples from 13 coronary artherectomies from large excentric ostial or bifurcational lesions were studied using optical and electron microscopy. Infectious agents compatible with archaea, chlamydia, and mycoplasma were semiquantified using electron micrographs and correlated with the amounts of fibromuscular tissue, myxoid matrix, and foam cells, as determined from semi-thin sections. Six of the cases were also submitted to polymerase chain reaction with archaeal primers. RESULTS: All 13 specimens showed archaeal-compatible structures and chlamydial and mycoplasmal bodies in at least 1 sample. There was a positive correlation between extent of the of myxoid matrix and archaeal bodies (r = 0.44, P = 0.02); between archaeal and mycoplasmal bodies (r = 0.41, P = 0.03), and between chlamydial bodies and foam cells (r = 0.42; P = 0.03). The PCR test was positive for archaeal DNA in 4 of the 6 fragments. DISCUSSION: DNA and forms suggestive of archaea are present in vulnerable plaques and may have a fundamental role in the proliferation of mycoplasma and chlamydia. This seems to be the first description of apparently pathogenic archaea in human internal organ lesions.PROPOSTA: Placas vulneráveis são caracterizadas por matriz mixomatosa, centro lipídico necrótico, espécies reativas de oxigênio e alto níveis de microorganismos. Micróbios aeróbicos como Chlamydophila pneumoniae e Mycoplasma pneumoniae usualmente não sobrevivem em meio de estresse oxidativo. Arquéias são microorganismos anaeróbicos com poderosas enzimas anti-oxidantes que permitem detoxificação de radicais livres e a presença delas poderia favorecer a sobrevivência de micróbios aeróbicos. Pesquisamos por elementos de arquéia em placas vulneráveis e sua possível associação com degeneração mixomatosa da matriz e aumento do número de clamídias e micoplasmas. MÉTODOS: Vinte e nove amostras de 13 produtos de aterotomia de lesões grandes e excêntricas de óstio ou bifurcação de coronárias foram estudadas pela microscopia óptica e eletrônica. Agentes compatíveis com arquéia, clamídia e micoplasma foram semiquantificados pela microscopia eletrônica e correlacionados com quantidade de tecido fibromuscular, matriz mixomatosa e células xantomatosas. Seis casos foram também submetidos à reação em cadeia da polimerase com oligonucleotídeos de arquéia. RESULTADOS: Os 13 casos foram positivos para estruturas sugestivas de arquéia, micoplasma ou clamídia, em pelo menos uma amostra. Houve correlação positiva entre intensidade de matriz mixomatosa versus arquéia (r=0.44, p=0.02); arquéia versus micoplasma (r=0.41, p=0.03) e clamídia versus células xantomatosas r=0,42; 0.03). PCR foi positiva para DNA de arqueia em 4 dos 6 fragmentos. DISCUSSÃO: DNA e formas compatíveis com arquéia estão presentes em placas vulneráveis e podem ter papel fundamental na proliferação de micoplasma e clamídia. Este parece ser o primeiro relato de arquéia aparentemente patogênica em lesões de órgãos internos humanos
Do Archaea and bacteria co-infection have a role in the pathogenesis of chronic chagasic cardiopathy?
Chronic cardiopathy (CC) in Chagas disease is a fibrotic myocarditis with C5b-9 complement deposition. Mycoplasma and Chlamydia may interfere with the complement response. Proteolytic enzymes and archaeal genes that have been described in Trypanosoma cruzi may increase its virulence. Here we tested the hypothesis that different ratios of Mycoplasma, Chlamydia and archaeal organisms, which are frequent symbionts, may be associated with chagasic clinical forms. MATERIALS AND METHODS: eight indeterminate form (IF) and 20 CC chagasic endomyocardial biopsies were submitted to in situ hybridization, electron and immunoelectron microscopy and PCR techniques for detection of Mycoplasma pneumoniae (MP), Chlamydia pneumoniae(CP), C5b-9 and archaeal-like bodies. RESULTS: MP and CP-DNA were always present at lower levels in CC than in IF (p < 0.001) and were correlated with each other only in CC. Electron microscopy revealed Mycoplasma, Chlamydia and two types of archaeal-like bodies. One had electron dense lipid content (EDL) and was mainly present in IF. The other had electron lucent content (ELC) and was mainly present in CC. In this group, ELC correlated negatively with the other microbes and EDL and positively with C5b-9. The CC group was positive for Archaea and T. cruzi DNA. In conclusion, different amounts of Mycoplasma, Chlamydia and archaeal organisms may be implicated in complement activation and may have a role in Chagas disease outcome.FAPESPCNPqFundação Zerbin
Fluctuation Effects on the Quadrupolar Ordering in Magnetic Field
Effects of magnetic field on the quadrupolar ordering are investigated with
inclusion of fluctuation of order parameters. For the simplest model with the
nearest-neighbor quadrupolar interaction, the transition temperature and the
specific heat are derived by the use of the recently proposed effective medium
theory. It is shown that magnetic field H has two competing effects on the
quadrupolar ordering; one is to encourage the ordering by suppressing the
fluctuation among different components of order parameters, and the other is to
block the ordering as in antiferromagnets. The former is found to be of order
H^2 and the latter of order H^4. Hence the fluctuation is suppressed for weak
fields, and the transition temperature increases with magnetic field. The
fluctuation effect is so strong that the entropy released at the quadrupolar
ordering is only about half of the full value ln 4 even without the Kondo
effect.Comment: 10 pages including 3 Postscript figure
Oral PTCTS (Particulated Transialidase) Removes Serum Microparticles and Decreases Inflammation in Atherosclerotic Plaques of Rabbits
Background: Previous studies showed that atherosclerotic plaque vulnerability was related with microparticles (MPs)-vesicles larger than 100 nm, which released MMP9 collagenase. In our pre- vious study, intramuscular injection of a new drug (PTCTS) normalized oxidized LDL serum levels and reduced rabbit atherosclerosis. Now, we studied administration of oral PTCTS in order to cla- rify anti-atherosclerotic mechanism of action, analyzing if the treatment removed MPs containing ox-LDL and Mycoplasma pneumoniae antigens and improved the immune response. Methods: We compared two groups of rabbits. Control group (CG, n = 6)—1% cholesterol enriched diet for 12 weeks; Treated group (TG, n = 8)—1% cholesterol enriched diet for 12 weeks with administration of PTCTS (400 μl/day) during the last 6 weeks of diet. The animals had their blood collected, in three different phases of the protocol before being fed with hypercholesterolemic diet, before be- ing treated with water or PTCTS and at the moment of sacrifice. The serum was submitted to im- munofluorescence technique to evaluate the quantity of microparticles marked with antibodies against Mycoplasma pneumoniae and ox-LDL. A fragment of aorta was submitted to immunohisto- chemical detection of antigens from MMP9, ox-LDL, NF-κB and IL-1β. Results: PTCTS showed significant reduction in MMP-9 (P = 0.001) and a tendency of reducing IL-1β (P = 0.09) in the aortic plaques compared with CG. In the serum, PTCTS was able to remove microparticles containing an- tigen of ox-LDL (P = 0.004) and Mycoplasma pneumoniae (P < 0.001). Conclusion: Oral treatment with PTCTS presented more adequate inflammatory response by reducing levels of ox-LDL, IL-1β and mycoplasma, as well as a better stabilization of the atheromatous plaque by reducing levels of MMP-9, avoiding plaque rupture, without causing mortality or toxicity.This work was supported by FAPESP (Fundation that supports research in the State of São Paulo, grant number
2012/12656-5) and Zerbini Foundation
Use of folding modulators to improve heterologous protein production in Escherichia coli
Despite the fundamental importance of E. coli in the manufacture of a wide range of biotechnological and biomedical products, extensive process and/or target optimisation is routinely required in order to achieve functional yields in excess of low mg/l levels. Molecular chaperones and folding catalysts appear to present a panacea for problems of heterologous protein folding in the organism, due largely to their broad substrate range compared with, e.g., protein-specific mutagenesis approaches. Painstaking investigation of chaperone overproduction has, however, met with mixed – and largely unpredictable – results to date. The past 5 years have nevertheless seen an explosion in interest in exploiting the native folding modulators of E. coli, and particularly cocktails thereof, driven largely by the availability of plasmid systems that facilitate simultaneous, non-rational screening of multiple chaperones during recombinant protein expression. As interest in using E. coli to produce recombinant membrane proteins and even glycoproteins grows, approaches to reduce aggregation, delay host cell lysis and optimise expression of difficult-to-express recombinant proteins will become even more critical over the coming years. In this review, we critically evaluate the performance of molecular chaperones and folding catalysts native to E. coli in improving functional production of heterologous proteins in the bacterium and we discuss how they might best be exploited to provide increased amounts of correctly-folded, active protein for biochemical and biophysical studies
Bacteria arise at the border of mycoplasma-infected HeLa cells, containing cytoplasm with either malformed cytosol, mitochondria and endoplasmic reticulum or tightly adjoined smooth vacuoles
A study with transmission electron microscopy of mycoplasma-contaminated HeLa cells using five cell donors referred to as donors A, B, C, D and E, observations are herein presented. Experiments performed with cells from donors B, C and D, revealed the presence of Mycoplasma hyorhinis after PCR and sequencing experiments. Bacteria probably originated from a cytoplasm with compacted tiny granular particles replacing the normal cytosol territories, or from the contact with the cytoplasm through a clear semi-solid material. The compact granularity (CG) of the cytoplasm was crossed by stripes of smooth and rough endoplasmic reticulum cisternae. Among apparently normal mitochondria, it was noted, in variable proportions, mitochondria with crista-delimited lucent central regions that expand to and occupied the interior of a crista-less organelle, which can undergo fission. Other components of the scenarios of mycoplasma-induced cell demolition are villus-like structures with associated 80-200 nm vesicles and a clear, flexible semi-solid, process-sensitive substance that we named jam-like material. This material coated the cytoplasmic surface, its recesses, irregular protrusions and detached cytoplasmic fragments. It also cushioned forming bacteria. Cyst-like structures were often present in the cytoplasm. Cells, mainly apoptotic, exhibiting ample cytoplasmic sectors with characteristic net-like profile due to adjoined vacuoles, as well as ovoid or elongated profiles, consistently appeared in all cells from the last four cell donors. These cells were named “modified host cells” because bacteria arose in the vacuoles. The possibility that, in some samples, there was infection and/or coinfection of the host cell by another organism(s) cannot be ruled out
Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle
Aim
We investigated architectural, functional and molecular responses of human skeletal muscle to concentric (CON) or eccentric (ECC) resistance training (RT).
Methods
Twelve young males performed 10 weeks of concentric (CON) or eccentric (ECC) resistance training (RT) (n = 6 CON, 6 ECC). An additional 14 males were recruited to evaluate acute muscle fascicle behaviour and molecular signalling in biopsies collected from vastus lateralis (VL) after 30 min of single bouts of CON or ECC exercise. VL volume was measured by magnetic resonance imaging. Muscle architecture (fascicle length, Lf; pennation angle, PA) was evaluated by ultrasonography. Muscle remodelling signals to CON or ECC loading [MAPK/AKT-mammalian target of rapamycin (mTOR) signalling] and inflammatory pathway (TNFαMurf-1-MAFbx) were evaluated by immunoblotting.
Results
Despite the ~1.2-fold greater load of the ECC group, similar increases in muscle volume (+8% CON and +6% ECC) and in maximal voluntary isometric contraction (+9% CON and +11% ECC) were found after RT. However, increases in Lf were greater after ECC than CON (+12 vs. +5%) while increases in PA were greater in CON than ECC (+30 vs. +5%). Distinct architectural adaptations were associated with preferential growth in the distal regions of VL for ECC (+ECC +8% vs. +CON +2) and mid belly for CON (ECC +7 vs. CON +11%). While MAPK activation (p38MAPK, ERK1/2, p90RSK) was specific to ECC, neither mode affected AKT-mTOR or inflammatory signalling 30 min after exercise.
Conclusion
Muscle growth with CON and ECC RT occurs with different morphological adaptations reflecting distinct fibre fascicle behaviour and molecular responses
Archaea Symbiont of T. cruzi Infection May Explain Heart Failure in Chagas Disease
Background: Archaeal genes present in Trypanosoma cruzi may represent symbionts that would explain development of heart failure in 30% of Chagas disease patients. Extracellular vesicles in peripheral blood, called exosomes (< 0.1 μm) or microvesicles (>0.1 μm), present in larger numbers in heart failure, were analyzed to determine whether they are derived from archaea in heart failure Chagas disease.Methods: Exosomes and microvesicles in serum supernatant from 3 groups were analyzed: heart failure Chagas disease (N = 26), asymptomatic indeterminate form (N = 21) and healthy non-chagasic control (N = 16). Samples were quantified with transmission electron microscopy, flow cytometer immunolabeled with anti-archaemetzincin-1 antibody (AMZ 1, archaea collagenase) and probe anti-archaeal DNA and zymography to determine AMZ1 (Archaeal metalloproteinase) activity.Results: Indeterminate form patients had higher median numbers of exosomes/case vs. heart failure patients (58.5 vs. 25.5, P < 0.001), higher exosome content of AMZ1 antigens (2.0 vs. 0.0; P < 0.001), and lower archaeal DNA content (0.2 vs. 1.5, P = 0.02). A positive correlation between exosomes and AMZ1 content was seen in indeterminate form (r = 0.5, P < 0.001), but not in heart failure patients (r = 0.002, P = 0.98). Higher free archaeal DNA (63.0 vs. 11.1, P < 0.001) in correlation with exosome numbers (r = 0.66, P = 0.01) was seen in heart failure but not in indeterminate form (r = 0.29, P = 0.10). Flow cytometer showed higher numbers of AMZ1 microvesicles in indeterminate form (64 vs. 36, P = 0.02) and higher archaeal DNA microvesicles in heart failure (8.1 vs. 0.9, P < 0.001). Zymography showed strong% collagenase activity in HF group, mild activity in IF compared to non-chagasic healthy group (121 ± 14, 106 ± 13 and 100; P < 0.001).Conclusions: Numerous exosomes, possibly removing and degrading abnormal AMZ1 collagenase, are associated with indeterminate form. Archaeal microvesicles and their exosomes, possibly associated with release of archaeal AMZ1 in heart failure, are future candidates of heart failure biomarkers if confirmed in larger series, and the therapeutic focus in the treatment of Chagas disease
- …