119 research outputs found

    Initial results of multilevel principal components analysis of facial shape

    Get PDF
    Traditionally, active shape models (ASMs) do not make a distinction between groups in the subject population and they rely on methods such as (single-level) principal components analysis (PCA). Multilevel principal components analysis (PCA) allows one to model between-group effects and within-group effects explicitly. Three dimensional (3D) laser scans were taken from 240 subjects (38 Croatian female, 35 Croatian male, 40 English female, 40 English male, 23 Welsh female, 27 Welsh male, 23 Finnish female, and 24 Finnish male) and 21 landmark points were created subsequently for each scan. After Procrustes transformation, eigenvalues from mPCA and from single-level PCA based on these points were examined. mPCA indicated that the first two eigenvalues of largest magnitude related to within-groups components, but that the next largest eigenvalue related to between-groups components. Eigenvalues from single-level PCA always had a larger magnitude than either within-group or between-group eigenvectors at equivalent eigenvalue number. An examination of the first mode of variation indicated possible mixing of between-group and within-group effects in single-level PCA. Component scores for mPCA indicated clustering with country and gender for the between-groups components (as ex-pected), but not for the within-group terms (also as expected). Clustering of component scores for single-level PCA was harder to resolve. In conclusion, mPCA is viable method of forming shape models that offers distinct advantages over single-level PCA when groups occur naturally in the subject population

    Using the 3D Facial Norms Database to investigate craniofacial sexual dimorphism in healthy children, adolescents, and adults

    Get PDF
    Background: Although craniofacial sex differences have been extensively studied in humans, relatively little is known about when various dimorphic features manifest during postnatal life. Using cross-sectional data derived from the 3D Facial Norms data repository, we tested for sexual dimorphism of craniofacial soft-tissue morphology at different ages. Methods: One thousand five hundred fifty-five individuals, pre-screened for craniofacial conditions, between 3 and 25 years of age were placed in to one of six age-defined categories: early childhood, late childhood, puberty, adolescence, young adult, and adult. At each age group, sex differences were tested by ANCOVA for 29 traditional soft-tissue anthropometric measurements collected from 3D facial scans. Additionally, sex differences in shape were tested using a geometric morphometric analysis of 24 3D facial landmarks. Results: Significant (p < 0.05) sex differences were observed in every age group for measurements covering multiple aspects of the craniofacial complex. The magnitude of the dimorphism generally increased with age, with large spikes in the nasal, cranial, and facial measurements observed after puberty. Significant facial shape differences (p < 0.05) were also seen at each age, with some dimorphic features already present in young children (eye fissure inclination) and others emerging only after puberty (mandibular position). Conclusions: Several craniofacial soft-tissue sex differences were already present in the youngest age group studied, indicating that these differences emerged prior to 3 years of age. The results paint a complex and heterogeneous picture, with different groups of traits exhibiting distinct patterns of dimorphism during ontogeny. The definitive adult male and female facial shape was present following puberty, but arose from numerous distinct changes taking place at earlier stages

    Multilevel models of age-related changes in facial shape in adolescents

    Get PDF
    Here we study the effects of age on facial shape in adolescents by using a method called multilevel principal components analysis (mPCA). An associated multilevel multivariate probability distribution is derived and expressions for the (conditional) probability of age-group membership are presented. This formalism is explored via Monte Carlo (MC) simulated data in the first dataset; where age is taken to increase the overall scale of a three-dimensional facial shape represented by 21 landmark points and all other “subjective” variations are related to the width of the face. Eigenvalue plots make sense and modes of variation correctly identify these two main factors at appropriate levels of the mPCA model. Component scores for both single-level PCA and mPCA show a strong trend with age. Conditional probabilities are shown to predict membership by age group and the Pearson correlation coefficient between actual and predicted group membership is r = 0.99. The effects of outliers added to the MC training data are reduced by the use of robust covariance matrix estimation and robust averaging of matrices. These methods are applied to another dataset containing 12 GPA-scaled (3D) landmark points for 195 shapes from 27 white, male schoolchildren aged 11 to 16 years old. 21% of variation in the shapes for this dataset was accounted for by age. Mode 1 at level 1 (age) via mPCA appears to capture an increase in face height with age, which is consistent with reported pubertal changes in children. Component scores for both single-level PCA and mPCA again show a distinct trend with age. Conditional probabilities are again shown to reflect membership by age group and the Pearson correlation coefficient is given by r = 0.63 in this case. These analyses are an excellent first test of the ability of multilevel statistical methods to model age-related changes in facial shape in adolescents

    Validation of a new three-dimensional imaging system using comparative craniofacial anthropometry

    Get PDF
    Abstract Background The aim of this study is to validate a new three-dimensional craniofacial stereophotogrammetry imaging system (3dMDface) through comparison with manual facial surface anthropometry. The null hypothesis was that there is no difference between craniofacial measurements using anthropometry vs. the 3dMDface system. Methods Facial images using the new 3dMDface system were taken from six randomly selected subjects, sitting in natural head position, on six separate occasions each 1 week apart, repeated twice at each sitting. Exclusion criteria were excess facial hair, facial piercings and undergoing current dentofacial treatment. 3dMDvultus software allowed facial landmarks to be marked and measurements recorded. The same measurements were taken using manual anthropometry, using soluble eyeliner to pinpoint landmarks, and sliding and spreading callipers and measuring tape to measure distances. The setting for the investigation was a dental teaching hospital and regional (secondary and tertiary care) cleft centre. The main outcome measure was comparison of the craniofacial measurements using the two aforementioned techniques. Results The results showed good agreement between craniofacial measurements using the 3dMDface system compared with manual anthropometry. For all measurements, except chin height and labial fissure width, there was a greater variability with the manual method compared to 3D assessment. Overall, there was a significantly greater variability in manual compared with 3D assessments (p < 0.02). Conclusions The 3dMDface system is validated for craniofacial measurements

    Three-dimensional photographic analysis of the face in European adults from southern Spain with normal occlusion: reference anthropometric measurements

    Get PDF
    Background: Recent non-invasive 3D photography method has been applied to facial analysis, offering numerous advantages in orthodontic. The purpose of this study was to analyze the faces of a sample of healthy European adults from southern Spain with normal occlusion in order to establish reference facial soft tissue anthropometric parameters in this specific geographic-ethnic population, as well as to analyze sexual dimorphism. Methods: A sample of 100 healthy adult volunteers consisting of 50 women (mean age, 22.92 ± 1.56 years) and 50 men (mean age, 22.37 ± 2.12 years) were enrolled in this study. All participants had normal occlusion, skeletal Class I, mesofacial pattern, and healthy body mass index. Three-dimensional photographs of the faces were captured noninvasively using Planmeca ProMax 3D ProFace®. Thirty landmarks related to the face, eyes, nose, and orolabial and chin areas were identified. Results: Male displayed higher values in all vertical and transversal dimensions, with the exception of the lower lip height. Larger differences between sexes were observed in face, mandible, and nose. Male also had higher values in the angular measurements which referred to the nose. No sex differences were found in transverse upper lip prominence or transverse mandibular prominence. No differences were found in the ratio measurements, with the exception of intercantal width/nasal width, which was higher in women than in men. Conclusions: Reference anthropometric measurements of facial soft tissues have been established in European adults from southern Spain with normal occlusion. Significant sexual dimorphism was found, with remarkable differences in size between sexe

    Advantages of cone beam computed tomography (CBCT) in the orthodontic treatment planning of cleidocranial dysplasia patients: a case report

    Get PDF
    Our aim was to discuss, by presenting a case, the possibilities connected to the use of a CBCT exam in the dental evaluation of patients with Cleidocranial Dysplasia (CCD), an autosomal dominant skeletal dysplasia with delayed exfoliation of deciduous and eruption of permanent teeth and multiple supernumeraries, often impacted. We think that CBCT in this patient was adequate to accurately evaluate impacted teeth position and anatomy, resulting thus useful both in the diagnostic process and in the treatment planning, with an important reduction in the radiation dose absorbed by the patient

    Predictors of long-term stability of maxillary dental arch dimensions in patients treated with a transpalatal arch followed by fixed appliances

    Get PDF
    Background: The aim of this retrospective study was to identify which dental and/or cephalometric variables were predictors of long-term maxillary dental arch stability in patients treated with a transpalatal arch (TPA) during the mixed dentition phase followed by full fixed appliances in the permanent dentition. Methods: Thirty-six patients, treated with TPA followed up by full fixed appliances, were divided into stable and relapse groups based on the long-term presence or not of relapse. Intercuspid, interpremolar and intermolar widths, arch length and perimeter, crowding, and upper incisor proclination were evaluated before treatment (T0), post-TPA treatment (T1), post-fixed appliance treatment (T2), and a minimum of 3 years after full fixed appliances’ removal (T3). A binary logistic regression was performed thereafter to evaluate the impact of the dental arch and cephalometric measurements at T1 and the changes between T0 and T1 as predictive variables for relapse at T3. Results: The proposed model explained 42.7 % of the variance in treatment stability and correctly classified 72.2 % of the sample. Of the seven predictive variables, only upper anterior crowding (p = 0.029) was statistically significant. For every millimeter of decreased crowding at T1 (after TPA treatment/before starting the fixed orthodontic treatment), there was an increase of 3.57 times in the odds of having stability. Conclusions: The best predictor of relapse was maxillary crowding before treatment. The odds of relapse increase by 3.6 times for every millimeter of crowding at baseline

    Comparative analysis between mandibular positions in centric relation and maximum intercuspation by cone beam computed tomography (CONE-BEAM)

    Get PDF
    This research consisted of a quantitative assessment, and aimed to measure the possible discrepancies between the maxillomandibular positions for centric relation (CR) and maximum intercuspation (MI), using computed tomography volumetric cone beam (cone beam method). The sample of the study consisted of 10 asymptomatic young adult patients divided into two types of standard occlusion: normal occlusion and Angle Class I occlusion. In order to obtain the centric relation, a JIG device and mandible manipulation were used to deprogram the habitual conditions of the jaw. The evaluations were conducted in both frontal and lateral tomographic images, showing the condyle/articular fossa relation. The images were processed in the software included in the NewTom 3G device (QR NNT software version 2.00), and 8 tomographic images were obtained per patient, four laterally and four frontally exhibiting the TMA's (in CR and MI, on both sides, right and left). By means of tools included in another software, linear and angular measurements were performed and statistically analyzed by student t test. According to the methodology and the analysis performed in asymptomatic patients, it was not possible to detect statistically significant differences between the positions of centric relation and maximum intercuspation. However, the resources of cone beam tomography are of extreme relevance to the completion of further studies that use heterogeneous groups of samples in order to compare the results
    corecore