87 research outputs found

    Impact of N-myc amplification on median survival in children with neuroblastoma

    Get PDF
    Background: Neuroblastoma is the most common extracranial malignant solid tumor in children under 5 years, and it is characterized by wide clinical and biological heterogeneity. N-myc oncogene amplification is considered to be one of the most important prognostic factors used to evaluate survival in these patients. Objectives: The aim of our study was to determine amplification of the N-myc oncogene using real-time quantitative polymerase chain reaction (PCR) and to show the influence of N-myc amplified tumors on the overall survival rate. Patients and Methods: This study is an analytical historical cohort study of forty children with neuroblastoma admitted to the Shafa Hospital, Iran from 1999 to 2010. Paraffined blocks of tumoral tissue were analyzed for N-myc amplification by a PCR. The degree of N-myc amplification was derived from the ratio of the N-myc oncogene and the single copy reference gene, NAGK. In the statistical analysis, a Kaplan-Meier survival analysis was used. Results: We found a variable degree of N-myc amplification, from 3 to 2 200, in 32 of the 40 neuroblastomas (80%). NMYC amplification was seen more frequently in patients older than 2.5 years (71.9%), stage 4 (65.6%) and female (53.1%). Median survival time in the males was significantly longer than in the females (P = 0.03). The overall median survival for N-myc amplified tumor patients was 20 months, and 30 months for the non amplified tumors. Conclusions: The N-myc amplified tumors may increase the probability of more aggressive behavior and rapid tumor progression, especially in advanced stages of neuroblastoma. This study confirmed the importance of obtaining correct measurements of oncogene amplification in the early evaluation of neuroblastomas in order to target more aggressive therapies in patients with a higher risk of cancer progression

    Noninvasive estimation of tumour viability in a xenograft model of human neuroblastoma with proton magnetic resonance spectroscopy (1H MRS)

    Get PDF
    The aim of the study was to evaluate proton magnetic resonance spectroscopy (1H MRS) for noninvasive biological characterisation of neuroblastoma xenografts in vivo. For designing the experiments, human neuroblastoma xenografts growing subcutaneously in nude rats were analysed in vivo with 1H MRS and magnetic resonance imaging at 4.7 T. The effects of spontaneous tumour growth and antiangiogenesis treatment, respectively, on spectral characteristics were evaluated. The spectroscopic findings were compared to tumour morphology, proliferation and viable tumour tissue fraction. The results showed that signals from choline (Cho)-containing compounds and mobile lipids (MLs) dominated the spectra. The individual ML/Cho ratios for both treated and untreated tumours were positively correlated with tumour volume (P<0.05). There was an inverse correlation between the ML/Cho ratio and the viable tumour fraction (r=−0.86, P<0.001). Higher ML/Cho ratios concomitant with pronounced histological changes were seen in spectra from tumours treated with the antiangiogenic drug TNP-470, compared to untreated control tumours (P<0.05). In conclusion, the ML/Cho ratio obtained in vivo by 1H MRS enabled accurate assessment of the viable tumour fraction in a human neuroblastoma xenograft model. 1H MRS also revealed early metabolic effects of antiangiogenesis treatment. 1H MRS could prove useful as a tool to monitor experimental therapy in preclinical models of neuroblastoma, and possibly also in children

    Angiogenesis in a human neuroblastoma xenograft model: mechanisms and inhibition by tumour-derived interferon-γ

    Get PDF
    Tumour progression in neuroblastoma (NB) patients correlates with high vascular index. We have previously shown that the ACN NB cell line is tumorigenic and angiogenic in immunodeficient mice, and that interferon-γ (IFN-γ) gene transfer dampens ACN tumorigenicity. As IFN-γ represses lymphocyte-induced tumour angiogenesis in various murine models and inhibits proliferation and migration of human endothelial cells, we have investigated the antiangiogenic activity of tumour-derived IFN-γ and the underlying mechanism(s). In addition, we characterised the tumour vasculature of the ACN xenografts, using the chick embryo chorioallantoic membrane assay. We show that the ACN/IFN-γ xenografts had a lower microvessel density and less in vivo angiogenic potential than the vector-transfected ACN/neo. The vascular channels of both xenografts were formed by a mixed endothelial cell population of murine and human origin, as assessed by the FICTION (fluorescence immunophenotyping and interphase cytogenetics) technique. With respect to ACN/neo, the ACN/IFN-γ xenografts showed more terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling-positive human and murine endothelial cells, suggesting that inhibition of angiogenesis by IFN-γ was dependent on the induction of apoptosis, likely mediated by nitric oxide. Once the dual origin of tumour vasculature is confirmed in NB patients, the xenograft model described here will prove useful in testing the efficacy of different antiangiogenic compounds

    Scientific Controversy, Issue Salience, and E-Cigarette Regulation: A Comparative Study of Policy Debates in Germany and England

    Get PDF
    Electronic cigarettes pose a regulatory challenge to governments seeking to balance their potential risks and benefits in the absence of conclusive scientific evidence. This comparative paper aims to explain the presence and absence of controversy about e-cigarette regulation in England and Germany, respectively. It identifies three sets of factors that help explain why e-cigarettes regulation became highly controversial in England, while in Germany this debate has been almost entirely absent. These factors relate to (1) differences in the perceived salience of e-cigarettes resulting from existing tobacco control measures, prevalence of e-cigarette use, the presence of the tobacco industry, and the role of public health community in public debate; (2) differences in institutional context and pathways of policy-making; and (3) differences in approaches to legitimize policy decisions through science and the judiciary. The paper highlights the complex interplay of political, institutional, and cultural factors in explaining differences in public health decision making

    Specific gene expression profiles and chromosomal abnormalities are associated with infant disseminated neuroblastoma

    Get PDF
    Background: Neuroblastoma (NB) tumours have the highest incidence of spontaneous remission, especially among the stage 4s NB subgroup affecting infants. Clinical distinction of stage 4s from lethal stage 4 can be difficult, but critical for therapeutic decisions. The aim of this study was to investigate chromosomal alterations and differential gene expression amongst infant disseminated NB subgroups. Methods: Thirty-five NB tumours from patients diagnosed at < 18 months (25 stage 4 and 10 stage 4s), were evaluated by allelic and gene expression analyses. Results: All stage 4s patients underwent spontaneous remission, only 48% stage 4 patients survived despite combined modality therapy. Stage 4 tumours were 90% near-diploid/tetraploid, 44% MYCN amplified, 77% had 1p LOH (50% 1p36), 23% 11q and/or 14q LOH (27%) and 47% had 17q gain. Stage 4s were 90% near-triploid, none MYCN amplified and LOH was restricted to 11q. Initial comparison analyses between stage 4s and 4 < 12 months tumours revealed distinct gene expression profiles. A significant portion of genes mapped to chromosome 1 (P < 0.0001), 90% with higher expression in stage 4s, and chromosome 11 (P = 0.0054), 91% with higher expression in stage 4. Less definite expression profiles were observed between stage 4s and 4 < 18m, yet, association with chromosomes 1 (P < 0.0001) and 11 (P = 0.005) was maintained. Distinct gene expression profiles but no significant association with specific chromosomal region localization was observed between stage 4s and stage 4 < 18 months without MYCN amplification. Conclusion: Specific chromosomal aberrations are associated with distinct gene expression profiles which characterize spontaneously regressing or aggressive infant NB, providing the biological basis for the distinct clinical behaviour

    Early Treatment with Fumagillin, an Inhibitor of Methionine Aminopeptidase-2, Prevents Pulmonary Hypertension in Monocrotaline-Injured Rats

    Get PDF
    Pulmonary Hypertension (PH) is a pathophysiologic condition characterized by hypoxemia and right ventricular strain. Proliferation of fibroblasts, smooth muscle cells, and endothelial cells is central to the pathology of PH in animal models and in humans. Methionine aminopeptidase-2 (MetAP2) regulates proliferation in a variety of cell types including endothelial cells, smooth muscle cells, and fibroblasts. MetAP2 is inhibited irreversibly by the angiogenesis inhibitor fumagillin. We have previously found that inhibition of MetAP2 with fumagillin in bleomycin-injured mice decreased pulmonary fibrosis by selectively decreasing the proliferation of lung myofibroblasts. In this study, we investigated the role of fumagillin as a potential therapy in experimental PH. In vivo, treatment of rats with fumagillin early after monocrotaline injury prevented PH and right ventricular remodeling by decreasing the thickness of the medial layer of the pulmonary arteries. Treatment with fumagillin beginning two weeks after monocrotaline injury did not prevent PH but was associated with decreased right ventricular mass and decreased cardiomyocyte hypertrophy, suggesting a direct effect of fumagillin on right ventricular remodeling. Incubation of rat pulmonary artery smooth muscle cells (RPASMC) with fumagillin and MetAP2-targeting siRNA inhibited proliferation of RPASMC in vitro. Platelet-derived growth factor, a growth factor that is important in the pathogenesis of PH and stimulates proliferation of fibroblasts and smooth muscle cells, strongly increased expression of MetP2. By immunohistochemistry, we found that MetAP2 was expressed in the lesions of human pulmonary arterial hypertension. We propose that fumagillin may be an effective adjunctive therapy for treating PH in patients

    Criteria for evaluation of disease extent by 123I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force

    Get PDF
    BackgroundNeuroblastoma is an embryonic tumour of the sympathetic nervous system, metastatic in half of the patients at diagnosis, with a high preponderance of osteomedullary disease, making accurate evaluation of metastatic sites and response to therapy challenging. Metaiodobenzylguanidine (mIBG), taken into cells via the norepinephrine transporter, provides a sensitive and specific method of assessing tumour in both soft tissue and bone sites. The goal of this report was to develop consensus guidelines for the use of mIBG scans in staging, response assessment and surveillance in neuroblastoma.MethodsThe International Neuroblastoma Risk Group (INRG) Task Force, including a multidisciplinary group in paediatric oncology of North and South America, Europe, Oceania and Asia, formed a subcommittee on metastatic disease evaluation, including expert nuclear medicine physicians and oncologists, who developed these guidelines based on their experience and the medical literature, with approval by the larger INRG Task Force.ResultsGuidelines for patient preparation, radiotracer administration, techniques of scanning including timing, energy, specific views, and use of single photon emission computed tomography are included. Optimal timing of scans in relation to therapy and for surveillance is reviewed. Validated semi-quantitative scoring methods in current use are reviewed, with recommendations for use in prognosis and response evaluation.ConclusionsMetaiodobenzylguanidine scans are the most sensitive and specific method of staging and response evaluation in neuroblastoma, particularly when used with a semi-quantitative scoring method. Use of the optimal techniques for mIBG in staging and response, including a semi-quantitative score, is essential for evaluation of the efficacy of new therapy
    corecore