31 research outputs found

    Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer's disease

    Get PDF
    Patients with Alzheimer's disease vary in their ability to sustain cognitive abilities in the presence of brain pathology. A major open question is which brain mechanisms may support higher reserve capacity, i.e. relatively high cognitive performance at a given level of Alzheimer's pathology. Higher functional MRI-assessed functional connectivity of a hub in the left frontal cortex is a core candidate brain mechanism underlying reserve as it is associated with education (i.e. a protective factor often associated with higher reserve) and attenuated cognitive impairment in prodromal Alzheimer's disease. However, no study has yet assessed whether such hub connectivity of the left frontal cortex supports reserve throughout the evolution of pathological brain changes in Alzheimer's disease, including the presymptomatic stage when cognitive decline is subtle. To address this research gap, we obtained cross-sectional resting state functional MRI in 74 participants with autosomal dominant Alzheimer's disease, 55 controls from the Dominantly Inherited Alzheimer's Network and 75 amyloid-positive elderly participants, as well as 41 amyloid-negative cognitively normal elderly subjects from the German Center of Neurodegenerative Diseases multicentre study on biomarkers in sporadic Alzheimer's disease. For each participant, global left frontal cortex connectivity was computed as the average resting state functional connectivity between the left frontal cortex (seed) and each voxel in the grey matter. As a marker of disease stage, we applied estimated years from symptom onset in autosomal dominantly inherited Alzheimer's disease and cerebrospinal fluid tau levels in sporadic Alzheimer's disease cases. In both autosomal dominant and sporadic Alzheimer's disease patients, higher levels of left frontal cortex connectivity were correlated with greater education. For autosomal dominant Alzheimer's disease, a significant left frontal cortex connectivity × estimated years of onset interaction was found, indicating slower decline of memory and global cognition at higher levels of connectivity. Similarly, in sporadic amyloid-positive elderly subjects, the effect of tau on cognition was attenuated at higher levels of left frontal cortex connectivity. Polynomial regression analysis showed that the trajectory of cognitive decline was shifted towards a later stage of Alzheimer's disease in patients with higher levels of left frontal cortex connectivity. Together, our findings suggest that higher resilience against the development of cognitive impairment throughout the early stages of Alzheimer's disease is at least partially attributable to higher left frontal cortex-hub connectivity

    Impact of age and vector construct on striatal and nigral transgene expression

    No full text
    Therapeutic protein delivery using viral vectors has shown promise in preclinical models of Parkinson's disease (PD) but clinical trial success remains elusive. This may partially be due to a failure to include advanced age as a covariate despite aging being the primary risk factor for PD. We investigated transgene expression following intracerebral injections of recombinant adeno-associated virus pseudotypes 2/2 (rAAV2/2), 2/5 (rAAV2/5), 2/9 (rAAV2/9), and lentivirus (LV) expressing green fluorescent protein (GFP) in aged versus young adult rats. Both rAAV2/2 and rAAV2/5 yielded lower GFP expression following injection to either the aged substantia nigra or striatum. rAAV2/9-mediated GFP expression was deficient in the aged striatonigral system but displayed identical transgene expression between ages in the nigrostriatal system. Young and aged rats displayed equivalent GFP levels following LV injection to the striatonigral system but LV-delivered GFP was deficient in delivering GFP to the aged nigrostriatal system. Notably, age-related transgene expression deficiencies revealed by protein quantitation were poorly predicted by GFP-immunoreactive cell counts. Further, in situ hybridization for the viral CÎČA promoter revealed surprisingly limited tropism for astrocytes compared to neurons. Our results demonstrate that aging is a critical covariate to consider when designing gene therapy approaches for PD

    Lewy body-like alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration

    No full text
    Abstract Background Converging evidence suggests a role for microglia-mediated neuroinflammation in Parkinson’s disease (PD). Animal models of PD can serve as a platform to investigate the role of neuroinflammation in degeneration in PD. However, due to features of the previously available PD models, interpretations of the role of neuroinflammation as a contributor to or a consequence of neurodegeneration have remained elusive. In the present study, we investigated the temporal relationship of neuroinflammation in a model of synucleinopathy following intrastriatal injection of pre-formed alpha-synuclein fibrils (α-syn PFFS). Methods Male Fischer 344 rats (N = 114) received unilateral intrastriatal injections of α-syn PFFs, PBS, or rat serum albumin with cohorts euthanized at monthly intervals up to 6 months. Quantification of dopamine neurons, total neurons, phosphorylated α-syn (pS129) aggregates, major histocompatibility complex-II (MHC-II) antigen-presenting microglia, and ionized calcium-binding adaptor molecule-1 (Iba-1) immunoreactive microglial soma size was performed in the substantia nigra. In addition, the cortex and striatum were also examined for the presence of pS129 aggregates and MHC-II antigen-presenting microglia to compare the temporal patterns of pSyn accumulation and reactive microgliosis. Results Intrastriatal injection of α-syn PFFs to rats resulted in widespread accumulation of phosphorylated α-syn inclusions in several areas that innervate the striatum followed by significant loss (~ 35%) of substantia nigra pars compacta dopamine neurons within 5–6 months. The peak magnitudes of α-syn inclusion formation, MHC-II expression, and reactive microglial morphology were all observed in the SN 2 months following injection and 3 months prior to nigral dopamine neuron loss. Surprisingly, MHC-II immunoreactivity in α-syn PFF injected rats was relatively limited during the later interval of degeneration. Moreover, we observed a significant correlation between substantia nigra pSyn inclusion load and number of microglia expressing MHC-II. In addition, we observed a similar relationship between α-syn inclusion load and number of microglia expressing MHC-II in cortical regions, but not in the striatum. Conclusions Our results demonstrate that increases in microglia displaying a reactive morphology and MHC-II expression occur in the substantia nigra in close association with peak numbers of pSyn inclusions, months prior to nigral dopamine neuron degeneration, and suggest that reactive microglia may contribute to vulnerability of SNc neurons to degeneration. The rat α-syn PFF model provides an opportunity to examine the innate immune response to accumulation of pathological α-syn in the context of normal levels of endogenous α-syn and provides insight into the earliest neuroinflammatory events in PD

    Correction to: Lewy body-like alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration

    No full text
    After publication of the original article [1] it was noted that the name of author, D. Luke Fisher, was erroneously typeset in both the PDF and online formats of the manuscript as Luke D. Fisher

    Intrastriatal injection of pre-formed mouse α-synuclein fibrils into rats triggers α-synuclein pathology and bilateral nigrostriatal degeneration

    No full text
    Previous studies demonstrate that intrastriatal injections of fibrillar alpha-synuclein (α-syn) into mice induce Parkinson\u27s disease (PD)-like Lewy body (LB) pathology formed by aggregated α-syn in anatomically interconnected regions and significant nigrostriatal degeneration. The aim of the current study was to evaluate whether exogenous mouse α-syn pre-formed fibrils (PFF) injected into the striatum of rats would result in accumulation of LB-like intracellular inclusions and nigrostriatal degeneration. Sprague-Dawley rats received unilateral intrastriatal injections of either non-fibrillized recombinant α-syn or PFF mouse α-syn in 1- or 2- sites and were euthanized at 30, 60 or 180. days post-injection (pi). Both non-fibrillized recombinant α-syn and PFF α-syn injections resulted in phosphorylated α-syn intraneuronal accumulations (i.e., diffuse Lewy neurite (LN)- and LB-like inclusions) with significantly greater accumulations following PFF injection. LB-like inclusions were observed in several areas that innervate the striatum, most prominently the frontal and insular cortices, the amygdala, and the substantia nigra pars compacta (SNpc). α-Syn accumulations co-localized with ubiquitin, p62, and were thioflavin-S-positive and proteinase-k resistant, suggesting that PFF-induced pathology exhibits properties similar to human LBs. Although α-syn inclusions within the SNpc remained ipsilateral to striatal injection, we observed bilateral reductions in nigral dopamine neurons at the 180-day time-point in both the 1- and 2-site PFF injection paradigms. PFF injected rats exhibited bilateral reductions in striatal dopaminergic innervation at 60 and 180. days and bilateral decreases in homovanillic acid; however, dopamine reduction was observed only in the striatum ipsilateral to PFF injection. Although the level of dopamine asymmetry in PFF injected rats at 180. days was insufficient to elicit motor deficits in amphetamine-induced rotations or forelimb use in the cylinder task, significant disruption of ultrasonic vocalizations was observed. Taken together, our findings demonstrate that α-syn PFF are sufficient to seed the pathological conversion and propagation of endogenous α-syn to induce a progressive, neurodegenerative model of α-synucleinopathy in rats

    Behavioral Characterization of A53T Mice Reveals Early and Late Stage Deficits Related to Parkinson’s Disease

    Get PDF
    <div><p>Parkinson's disease (PD) pathology is characterized by the formation of intra-neuronal inclusions called Lewy bodies, which are comprised of alpha-synuclein (α-syn). Duplication, triplication or genetic mutations in α-syn (A53T, A30P and E46K) are linked to autosomal dominant PD; thus implicating its role in the pathogenesis of PD. In both PD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of protein aggregates (i.e., α-syn) and neurodegeneration. Characterization of the timing and nature of symptomatic dysfunction is important for understanding the impact of α-syn on disease progression. Furthermore, this knowledge is essential for identifying pathways and molecular targets for therapeutic intervention. To this end, we examined various functional and morphological endpoints in the transgenic mouse model expressing the human A53T α-syn variant directed by the mouse prion promoter at specific ages relating to disease progression (2, 6 and 12 months of age). Our findings indicate A53T mice develop fine, sensorimotor, and synaptic deficits before the onset of age-related gross motor and cognitive dysfunction. Results from open field and rotarod tests show A53T mice develop age-dependent changes in locomotor activity and reduced anxiety-like behavior. Additionally, digigait analysis shows these mice develop an abnormal gait by 12 months of age. A53T mice also exhibit spatial memory deficits at 6 and 12 months, as demonstrated by Y-maze performance. In contrast to gross motor and cognitive changes, A53T mice display significant impairments in fine- and sensorimotor tasks such as grooming, nest building and acoustic startle as early as 1–2 months of age. These mice also show significant abnormalities in basal synaptic transmission, paired-pulse facilitation and long-term depression (LTD). Combined, these data indicate the A53T model exhibits early- and late-onset behavioral and synaptic impairments similar to PD patients and may provide useful endpoints for assessing novel therapeutic interventions for PD.</p></div

    Synaptic deficits present in the CA1 region of A53T mice as early as 2 months.

    No full text
    <p>Field potentials were evoked by stimulating the Schaffer collaterals with a concentric bipolar electrode and recorded with glass electrodes in the stratum radiatum of CA1. Basal synaptic transmission is significantly impaired in 2 month A53T mice compared to wild type littermates (A). Paired-pulse facilitation (PPF) is significantly enhanced in 2 month-old A53T mice (B). Theta burst stimulation (TBS) induces LTP similarly in 2 month-old wild type and A53T mice (C). Low frequency stimulation (LFS, 900 pulses at 1 Hz) induces short and long term depression in wild type mice; however, it induces both short and long term potentiation in A53T mice (D). Data plotted as Mean+/− SEM. fEPSP = Field Excitatory Post-Synaptic Potentials, mV = millivolts, min = minutes.</p

    Total and aggregated mutant alpha synuclein (α-syn) increases with age and onset of disease.

    No full text
    <p>Human specific α-syn was expressed in neurons and neuropil of A53T homozygote (top panel), but not wild type mice (bottom panel; A). Western blot analysis indicates human α-syn levels significantly increase with age in A53T brain (n = 6 per group; B). α-syn aggregates are rare but visible at 2 months, then accumulate with age; representative photo of proteinase-K resistant aggregates in A53T brain (pons region) at 2, 6 and 12 months (C). Kaplan-Meier survival curve illustrates onset of disease, as defined by motor disability, between 8–17 months in homozygous A53T mice (n = 30; D). Data normalized to actin and plotted as Mean+/− SEM. **p<0.001.</p

    A53T mice exhibit age-related spatial memory deficits.

    No full text
    <p>Mice were allowed to explore two arms (start & familiar) of the Y-maze for five minutes (Trial 1). During this acclimation period, both wild type and A53T mice performed similarly when exploring (A) and entering (B) arms. The percent duration in each arm for 2 month old wild type mice was different than chance (#, 95% confidence interval; dotted line = 50%); however the overall entries and total time spent in arms were similar for both genotypes (data not shown). After a one-hour inter-trial interval, wild type mice of all ages and 2-month-old A53T mice spent significantly more time exploring (C) and entering (D) the novel arm of the Y-maze compared to the start or familiar arms. Conversely, 6 and 12 month old A53T mice did not show a preference for the novel arm, suggesting a disruption in spatial memory. There were no alterations in locomotor indices across genotype or age (not shown). Data plotted as Mean +/−SEM. To look for equal exploration of arms, data were compared to chance (depicted by dotted line; T1 = 50%, T2 = 33.3%) using the 95% confidence interval (<sup>#</sup>p<0.05). Unpaired t-test analysis was utilized for assessing differences between genotypes within age (*p<0.05). n = 11–15 per group; W = wild type, H = homozygote.</p
    corecore