10 research outputs found

    Stem cells are differentially regulated during development, regeneration and homeostasis in flatworms

    Get PDF
    AbstractThe flatworm stem cell system is exceptional within the animal kingdom, as totipotent stem cells (neoblasts) are the only dividing cells within the organism. In contrast to most organisms, piwi-like gene expression in flatworms is extended from germ cells to somatic stem cells. We describe the isolation and characterization of the piwi homologue macpiwi in the flatworm Macrostomum lignano. We use in situ hybridization, antibody staining and RNA interference to study macpiwi expression and function in adults, during postembryonic development, regeneration and upon starvation. We found novelties regarding piwi function and observed differences to current piwi functions in flatworms. First, macpiwi was essential for the maintenance of somatic stem cells in adult animals. A knock-down of macpiwi led to a complete elimination of stem cells and death of the animals. Second, the regulation of stem cells was different in adults and regenerates compared to postembryonic development. Third, sexual reproduction of M. lignano allowed to follow germline formation during postembryonic development, regeneration, and starvation. Fourth, piwi expression in hatchlings further supports an embryonic formation of the germline in M. lignano. Our findings address new questions in flatworm stem cell research and provide a basis for comparison with higher organisms

    Surprising Base Pairing and Structural Properties of 2′-Trifluoromethylthio-Modified Ribonucleic Acids

    No full text
    The chemical synthesis of ribonucleic acids (RNA) with novel chemical modifications is largely driven by the motivation to identify eligible functional probes for the various applications in life sciences. To this end, we have a strong focus on the development of novel fluorinated RNA derivatives that are powerful in NMR spectroscopic analysis of RNA folding and RNA ligand interactions. Here, we report on the synthesis of 2′-SCF<sub>3</sub> pyrimidine nucleoside containing oligoribonucleotides and the comprehensive investigation of their structure and base pairing properties. While this modification has a modest impact on thermodynamic stability when it resides in single-stranded regions, it was found to be destabilizing to a surprisingly high extent when located in double helical regions. Our NMR spectroscopic investigations on short single-stranded RNA revealed a strong preference for C2′-endo conformation of the 2′-SCF<sub>3</sub> ribose unit. Together with a recent computational study (L. Li, J. W. Szostak, <i>J. Am. Chem. Soc</i>. <b>2014</b>, <i>136</i>, 2858–2865) that estimated the extent of destabilization caused by a single C2′-endo nucleotide within a native RNA duplex to amount to 6 kcal mol<sup>−1</sup> because of disruption of the planar base pair structure, these findings support the notion that the intrinsic preference for C2′-endo conformation of 2′-SCF<sub>3</sub> nucleosides is most likely responsible for the pronounced destabilization of double helices. Importantly, we were able to crystallize 2′-SCF<sub>3</sub> modified RNAs and solved their X-ray structures at atomic resolution. Interestingly, the 2′-SCF<sub>3</sub> containing nucleosides that were engaged in distinct mismatch arrangements, but also in a standard Watson–Crick base pair, adopted the same C3′-endo ribose conformations as observed in the structure of the unmodified RNA. Likely, strong crystal packing interactions account for this observation. In all structures, the fluorine atoms made surprisingly close contacts to the oxygen atoms of the corresponding pyrimidine nucleobase (O2), and the 2′-SCF<sub>3</sub> moieties participated in defined water-bridged hydrogen-bonding networks in the minor groove. All these features allow a rationalization of the structural determinants of the 2′-SCF<sub>3</sub> nucleoside modification and correlate them to base pairing properties

    2′-Azido RNA, a Versatile Tool for Chemical Biology: Synthesis, X-ray Structure, siRNA Applications, Click Labeling

    No full text
    Chemical modification can significantly enrich the structural and functional repertoire of ribonucleic acids and endow them with new outstanding properties. Here, we report the syntheses of novel 2′-azido cytidine and 2′-azido guanosine building blocks and demonstrate their efficient site-specific incorporation into RNA by mastering the synthetic challenge of using phosphoramidite chemistry in the presence of azido groups. Our study includes the detailed characterization of 2′-azido nucleoside containing RNA using UV-melting profile analysis and CD and NMR spectroscopy. Importantly, the X-ray crystallographic analysis of 2′-azido uridine and 2′-azido adenosine modified RNAs reveals crucial structural details of this modification within an A-form double helical environment. The 2′-azido group supports the C3′-<i>endo</i> ribose conformation and shows distinct water-bridged hydrogen bonding patterns in the minor groove. Additionally, siRNA induced silencing of the brain acid soluble protein (BASP1) encoding gene in chicken fibroblasts demonstrated that 2′-azido modifications are well tolerated in the guide strand, even directly at the cleavage site. Furthermore, the 2′-azido modifications are compatible with 2′-fluoro and/or 2′-<i>O</i>-methyl modifications to achieve siRNAs of rich modification patterns and tunable properties, such as increased nuclease resistance or additional chemical reactivity. The latter was demonstrated by the utilization of the 2′-azido groups for bioorthogonal Click reactions that allows efficient fluorescent labeling of the RNA. In summary, the present comprehensive investigation on site-specifically modified 2′-azido RNA including all four nucleosides provides a basic rationale behind the physico- and biochemical properties of this flexible and thus far neglected type of RNA modification

    Thermodynamics of HIV‑1 Reverse Transcriptase in Action Elucidates the Mechanism of Action of Non-Nucleoside Inhibitors

    No full text
    HIV-1 reverse transcriptase (RT) is a heterodimeric enzyme that converts the genomic viral RNA into proviral DNA. Despite intensive biochemical and structural studies, direct thermodynamic data regarding RT interactions with its substrates are still lacking. Here we addressed the mechanism of action of RT and of non-nucleoside RT inhibitors (NNRTIs) by isothermal titration calorimetry (ITC). Using a new incremental-ITC approach, a step-by-step thermodynamic dissection of the RT polymerization activity showed that most of the driving force for DNA synthesis is provided by initial dNTP binding. Surprisingly, thermodynamic and kinetic data led to a reinterpretation of the mechanism of inhibition of NNRTIs. Binding of NNRTIs to preformed RT/DNA complexes is hindered by a kinetic barrier and NNRTIs mostly interact with free RT. Once formed, RT/NNRTI complexes bind DNA either in a seemingly polymerase-competent orientation or form high-affinity dead-end complexes, both RT/NNRTI/DNA complexes being unable to bind the incoming nucleotide substrate
    corecore